NC 远程指示器公共远程指示器。无远程指示器未使用电流限制接地(发电机端子 E)发电机控制复位发电机接通反循环负载总线接触器线圈接地(发电机端子。E) 接地故障变压器调节点发电机输出(端子。B) 发电机励磁(端子。D) 发电机。极间(端子D) 场返回(端子E) 接地故障变压器过压测试接地故障测试跳闸开关均衡器总线底盘接地
NC 远程指示器公共远程指示器。无远程指示器未使用电流限制接地(发电机端子 E)发电机控制复位发电机接通反循环负载总线接触器线圈接地(发电机端子。E) 接地故障变压器调节点发电机输出(端子。B) 发电机励磁(端子。D) 发电机。极间(端子D) 场返回(端子E) 接地故障变压器过压测试接地故障测试跳闸开关均衡器总线底盘接地
BAUER BSD 3000 是一种反循环钻井系统,配备全断面加重牙轮钻头钻头。钻机由船上起重机下水并定位在海床上,放入预先安装好的海底模板中。远程控制通过位于甲板上的 Bauer 模块化控制舱进行。所有钻井功能以及桩安装/灌浆的监控/定位都是远程执行的,电源和信号通过柔性脐带缆连接,方式与 ROV 相同。随后的钻井弃土和岩屑通过空运运送到海床。当能见度较差时,所有主要功能都通过摄像头和近距离传感器进行监控。钻井设备和脐带缆经过特殊设计,可承受异常海床流和表面波造成的巨大力量和疲劳。脐带处理系统必须补偿即使是最强大的 DP 船舶也不可避免的运动,还必须确保在紧急情况下所有脐带都能安全拆卸,所有软管都具有故障安全关闭功能。钻井模板的所有关键部件均由 Bauer 设计、制造和测试。
图 1.2-1 说明迭代过程的图表 22 图 1.2-2 Cigeo 项目开发,自 1991 年以来逐步整合安全性的迭代过程 - 关键里程碑 23 图 2.1-1 高放废物玻璃化废物包图像 31 图 2.2-1 Cigeo 的地面和地下设施图表 32 图 2.2-2 位于斜坡区域的建筑物地理周长图表 33 图 2.2-3 竖井区域的地理周长图表 34 图 2.2-4 不同区域和地面-底部连接的图像 35 图 2.3-1 ZIRA 的位置以及可能设有地面设施的区域 38 图 2.4-1 Cigeo 项目主要阶段图表 39 图 2.4-2 根据连续阶段显示施工工作和运营顺序的图表 40 图 3.2-1协调一致的操作安全和关闭后安全方法 46 图 3.2-2 解释用于识别和分析操作情况的方法的图表 50 图 1.4-1 当前的 ILW-LL 处置包模型 79 图 1.4-2 CS4 ILW-LL 处置容器,盖子用螺钉固定 82 图 1.4-3 铸造过程中和全尺寸原型上的容器底部图片。83 图 1.4-4 CS4 容器跌落测试演示 84 图 1.4-5 CS4 容器从 2.3 米高处跌落到其一角之前和之后(数值模拟结果和全尺寸原型结果) 85 图 1.4-6 密封、灌浆和仪表化的 CS4 容器,用于一小时 ISO 834 防火测试。测试前后全尺寸原型的状况。86 图 1.4-7 参考配方与聚丙烯纤维扩散特性 87 图 1.4-8 CS3、CS2 和 CS4 原型的制造步骤 88 图 1.5-1 当前 HLW 处置包模型 89 图 1.5-2 AVM 玻璃化废物串联处置包 92 图 1.5-3 R7-T7 处置包,右上方为抓握槽的详细视图。93 图 1.5-4 陶瓷垫上的蚀刻标记。93 图 1.5-5 跌落测试和氦气泄漏测试。94 图 1.5-6 对 HLW 容器进行的测试。95 图 1.6-1 用于 Cigeo 的初级包装知识的使用过程 98 图 1.6-2 与沥青污泥包装相关的安全标准 108 图 1.6-3 在经认可的防火测试实验室(法国工作人员)对包含四桶沥青废物的 CS4 包装进行的防火测试。109 图 2.1-1 钻孔 EST442,目标 Dogger。使用反循环潜孔锤进行钻孔(照片:Eric Poirot,Andra)118 图 2.1-2 Andra 实验室周围的地震反射勘测(照片:Véronique Paul,Graphix)118 图 2.1-3 将数据集成到地质模型中(照片:Patrice Maurein)119 图 2.2-1 该区域的地形图 120