1.2 人员伤害 3 1.3 飞机损坏 3 1.4 其他损坏 3 1.5 人员信息 4 1.6 飞机信息 4 1.7 气象信息 6 1.8 助航设备 7 1.9 通讯 7 1.1 机场信息 7 1.11 飞行记录器 7 1.12 残骸和撞击信息 8 1.13 医疗和病理信息 8 1.15 生存方面 9 1.16 测试和研究 9 1.17 附加信息 12 1.18 有用或有效的调查技术 13 2 分析 2.1 概述 14 2.2 飞机残骸和结构故障分析 17 2.2.1 飞机残骸 17 2.2.2 飞行中解体顺序 18 2.2.3 火灾损坏 19 2.3 工程模拟 21 2.4 反推力装置认证 27 2.5 反推力装置可能的故障模式 30 2.5.1 概述 30 2.5.2 机组指挥的部署 31 2.5.3 导致部署的电气系统故障 32 2.5.4 导致部署的液压系统故障 33 2.6 维护活动 35 2.7 事故导致的系统设计变更 36 ii 2.8 飞行数据记录器损坏 38 3 结论 3.1 发现 40 3.2 可能的原因 42 4 建议 43 5 附录 附录 A--驾驶舱语音记录器记录摘录 44 附录 B--残骸分布图 58 附录 C--反推力装置系统概述59 附录 D--美国国家运输安全委员会紧急行动安全建议 91-45 至 91-48 69 附录 E--美国联邦航空管理局 1991 年 9 月 11 日信函 74 附录 F--图表 767 PW 4000 推力反向器,当前/新系统 79 附录 G--授权代表的评论 80
1.2 人员伤害 3 1.3 飞机损坏 3 1.4 其他损坏 3 1.5 人员信息 4 1.6 飞机信息 4 1.7 气象信息 6 1.8 助航设备 7 1.9 通讯 7 1.1 机场信息 7 1.11 飞行记录器 7 1.12 残骸和撞击信息 8 1.13 医疗和病理信息 8 1.15 生存方面 9 1.16 测试和研究 9 1.17 附加信息 12 1.18 有用或有效的调查技术 13 2 分析 2.1 概述 14 2.2 飞机残骸和结构故障分析 17 2.2.1 飞机残骸 17 2.2.2 飞行中解体顺序 18 2.2.3 火灾损坏 19 2.3 工程模拟 21 2.4 反推力装置认证 27 2.5 反推力装置可能的故障模式 30 2.5.1 概述 30 2.5.2 机组指挥的部署 31 2.5.3 导致部署的电气系统故障 32 2.5.4 导致部署的液压系统故障 33 2.6 维护活动 35 2.7 事故导致的系统设计变更 36 ii 2.8 飞行数据记录器损坏 38 3 结论 3.1 发现 40 3.2 可能的原因 42 4 建议 43 5 附录 附录 A--驾驶舱语音记录器记录摘录 44 附录 B--残骸分布图 58 附录 C--反推力装置系统概述59 附录 D--美国国家运输安全委员会紧急行动安全建议 91-45 至 91-48 69 附录 E--美国联邦航空管理局 1991 年 9 月 11 日信函 74 附录 F--图表 767 PW 4000 推力反向器,当前/新系统 79 附录 G--授权代表的评论 80
1.2 人员伤害 3 1.3 飞机损坏 3 1.4 其他损坏 3 1.5 人员信息 4 1.6 飞机信息 4 1.7 气象信息 6 1.8 助航设备 7 1.9 通讯 7 1.1 机场信息 7 1.11 飞行记录器 7 1.12 残骸和撞击信息 8 1.13 医疗和病理信息 8 1.15 生存方面 9 1.16 测试和研究 9 1.17 附加信息 12 1.18 有用或有效的调查技术 13 2 分析 2.1 概述 14 2.2 飞机残骸和结构故障分析 17 2.2.1 飞机残骸 17 2.2.2 飞行中解体顺序 18 2.2.3 火灾损坏 19 2.3 工程模拟 21 2.4 反推力装置认证 27 2.5 反推力装置可能的故障模式 30 2.5.1 概述 30 2.5.2 机组指挥的部署 31 2.5.3 导致部署的电气系统故障 32 2.5.4 导致部署的液压系统故障 33 2.6 维护活动 35 2.7 事故导致的系统设计变更 36 ii 2.8 飞行数据记录器损坏 38 3 结论 3.1 发现 40 3.2 可能的原因 42 4 建议 43 5 附录 附录 A--驾驶舱语音记录器记录摘录 44 附录 B--残骸分布图 58 附录 C--反推力装置系统概述59 附录 D--美国国家运输安全委员会紧急行动安全建议 91-45 至 91-48 69 附录 E--美国联邦航空管理局 1991 年 9 月 11 日信函 74 附录 F--图表 767 PW 4000 推力反向器,当前/新系统 79 附录 G--授权代表的评论 80
60 多年来,航空航天业一直依赖 Morgan Advanced Materials 公司市场领先且创新的 Min-K ® 微孔隔热材料,为从关键数据记录器到反推力装置和管道隔热罩等应用提供轻质、隔热和防火隔热解决方案。航空航天应用中的这些极端环境需要经过精心设计的解决方案,以满足严格的性能、温度和重量规格。Min-K 航空航天微孔隔热产品被选为商用和国防飞机的应用产品。我们的材料具有耐化学和物理磨损、耐腐蚀和耐高温的特性,非常适合用于这些严苛的应用。我们的解决方案提供:• 刚性、柔性或面板系统的工程解决方案。• 低导热性、出色的热效率、高抗压强度、低重量和低
13:06:30 起飞滑跑时功率降低,纵向加速度很快达到 0.23 g。13:06:54 大约 24 秒后,在指示空速 98.4 kt 时,飞机降低起飞功率并开始刹车。13:06:55 飞机的速度在接下来的一秒钟内仍在增加,最大速度达到 98.9 kt IAS;其减速度达到 0.27 g,俯仰角超过加速期间保持的 -0.9 度,达到 -1.3 度。13:06:56 两秒后,速度大幅降低至 62 kt(尽管这个读数可能是虚假的),3 号和 4 号发动机的反推力已经启动。纵向和横向加速度读数每隔四分之一秒记录一次,在这一秒内会在 ± 1g 之间波动两次。