酒精是最常用的物质之一,也经常被滥用,然而人们对饮酒后抑制控制表现变化的神经基础知之甚少。这项研究是单盲、安慰剂对照、随机设计,参与者(N=48)完成三次研究访问。每次访问时,参与者都会接受三种酒精剂量中的一种;即安慰剂剂量(等效血液酒精浓度 (BAC) = 0.00%)、低剂量酒精(目标 BAC=0.04%)或中等剂量酒精(目标 BAC=0.08%)。为了测量抑制控制,参与者在每次研究访问期间完成两次 Go/No-go 任务范例,一次是在服药前立即完成,一次是在服药后完成,同时用时域功能近红外光谱 (TD-fNIRS) 测量他们的大脑活动。还评估了酒精的 BAC 和主观影响。我们报告中等剂量的酒精会导致行为表现下降,但低剂量或安慰剂不会。我们在 go-no-go 阻滞实验中观察到右侧抑制性前额叶活动,这与先前的文献一致。使用标准和新颖的侧化指标,我们能够显著区分所有剂量。最后,我们证明这些指标不仅与抑制控制期间的行为表现有关,而且还为醉酒的法定黄金标准(即 BAC)提供了补充信息。
Téo Kronovsek、Eric Hermand、Alain Berthoz、Alexander Castilla、Matthieu Gallou-Guyot 等人。与年龄相关的视觉空间工作记忆衰退反映在背外侧前额叶激活和认知能力上。行为脑研究,2021 年,第 398 页,第 112981 页。�10.1016/j.bbr.2020.112981�。�hal-03187511�
社会经济地位 (SES) 与大脑结构相关,鉴于长期以来观察到的 SES 与认知能力和健康之间的关系,这种关系备受关注。然而,主要问题仍未得到解决,尤其是这种关系背后的因果关系模式。在一项前所未有的大规模研究中,我们评估了遗传和环境对神经解剖学 SES 差异的贡献。我们首先在多个大脑区域(皮层和皮层下)建立稳健的 SES-灰质关系。这些区域相关性被解析为主要是遗传因素和可能由环境引起的因素。我们表明,遗传效应在某些区域(前额叶皮层、岛叶)比其他区域更强。在遗传效应较小的区域(小脑、颞侧),环境因素可能会产生影响。我们的研究结果表明,遗传和环境因素之间存在复杂的相互作用,这些因素影响着 SES-大脑关系,并可能最终为政策提供相关的见解。
成人和儿童都通过反馈来学习将环境事件和选择与奖励联系起来,这一过程称为强化学习 (RL)。然而,用于评估儿童 RL 相关神经认知过程的任务有限。这项研究在记录事件相关电位 (ERP) 的同时,在青春期前儿童 (8-12 岁) 中验证了概率奖励学习任务的儿童版,重点关注:(1) 奖励-反馈敏感性 (额叶奖励相关积极性,RewP),(2) 对反馈的晚期注意力相关反应 (顶叶 P300),以及 (3) 注意力转向喜爱的刺激 (N2pc)。从行为上讲,正如预期的那样,青春期前儿童可以学习刺激-奖励结果关联,但表现水平各不相同。与学习优秀的学生相比,学习较差的学生表现出更大的 RewP 振幅。学习策略(即赢-输-留下-转移)由反馈诱发的 P300 振幅反映。最后,注意力会转移到待选择的刺激上,这一点由 N2pc 证明,但不会像成年人那样转移到奖励更高的刺激上。这些发现为青少年 RL 背后的神经过程提供了新的见解。
b“由于四舍五入,总值可能不等于 100%。本文件是一般性沟通,仅供参考。它本质上是教育性的,并非旨在推荐任何特定的投资产品、策略、计划功能或其他目的。使用的任何示例都是通用的、假设的,仅供说明之用。在做出任何投资或财务决策之前,投资者应向个人财务、法律、税务和其他专业人士寻求个性化建议,这些建议会考虑到投资者自身情况的所有具体事实和情况。风险摘要以下风险可能导致该策略的投资组合亏损或表现不如其他投资。由于影响个别公司的因素以及经济或政治条件的变化,股票证券的价格可能会迅速或不可预测地波动。这些价格变动可能会导致您的投资损失。公司不保证会宣布、继续支付或增加股息。综合指数综合指数包括根据重点股息增长策略投资的所有可自由支配的独立管理账户。该策略旨在通过主要投资具有提高股息历史的美国公司来实现长期资本增长。指数管理账户收取费用会降低其表现:指数则不会。您不能直接投资指数。标准普尔 500 指数是一个非管理指数,通常代表美国股市大公司的表现。指数水平以总回报美元计算。过去的表现并不能保证未来的结果。前十大持股列出的前十大持股仅反映该策略的长期投资。不包括短期投资。持股可能会发生变化。列出的持股不应被视为购买或出售特定证券的建议。每种证券均按策略中持有的证券总市值的百分比计算,不包括使用衍生品头寸(如适用)。投资组合分析定义市盈率是每股收益乘以该数字以估算股票价值。
b"由于四舍五入,总值可能不等于 100%。本文件是一般性沟通,仅供参考。它本质上是教育性的,并非旨在推荐任何特定的投资产品、策略、计划功能或其他目的。使用的任何示例都是通用的、假设的,仅供说明之用。在做出任何投资或财务决策之前,投资者应向个人财务、法律、税务和其他专业人士寻求个性化建议,这些建议会考虑到投资者自身情况的所有具体事实和情况。风险摘要以下风险可能导致该策略的投资组合亏损或表现不如其他投资。由于影响个别公司的因素以及经济或政治条件的变化,股票证券的价格可能会迅速或不可预测地波动。这些价格变动可能会导致您的投资损失。不能保证公司会宣布、继续支付或增加股息。综合综合包括根据 JPMIM 的价值优势战略投资的所有可自由支配的独立管理账户。通过此策略,无论市值如何,上市公司都有资格购买。我们的投资流程力求找到那些能够产生大量现金流的公司,这些公司的管理团队能够有效地分配资本,以提高每股的内在价值。我们认为,这些公司最有可能在长期内跑赢市场。2008 年 6 月之前的表现来自 All Cap Value(以前称为 Value Advantage)机构综合指数,该指数可能反映出无法在 Value Advantage 管理账户中复制的投资。此类投资的示例包括但不限于以每股市场价值交易的证券,这将导致购买零碎股票和衍生品。成立日期为 2005 年 3 月 1 日。指数管理账户收取费用会降低其绩效,而指数则不会。您不能直接投资于指数。Russell 3000 价值指数是一种非管理指数,用于衡量市净率较低和预测增长值较低的 Russell 3000 公司(美国最大的 3000 家公司)的绩效。过去的表现并不能保证未来的结果。顶级持股 列出的十大持股仅反映该策略的长期投资。不包括短期投资。持股可能会发生变化。列出的持股不应被视为购买或出售特定证券的建议。每个人”
b"由于四舍五入,总值可能不等于 100%。本文件是一般性沟通,仅供参考。它本质上是教育性的,并非旨在推荐任何特定的投资产品、策略、计划功能或其他目的。使用的任何示例都是通用的、假设的,仅供说明之用。在做出任何投资或财务决策之前,投资者应向个人财务、法律、税务和其他专业人士寻求个性化建议,这些建议考虑到投资者自身情况的所有具体事实和情况。风险摘要以下风险可能导致该策略的投资组合亏损或表现不如其他投资。由于一些海外市场的政治和经济不稳定,国际投资具有更大的风险和更大的波动性。美国以外的货币汇率变化和不同的会计和税收政策可能会影响回报。综合综合包括根据创新者战略投资的所有可自由支配的独立管理账户。该战略旨在通过投资旨在有效推动创新的公司来实现长期总回报,这些公司通过投资研发来实现更高的增长和盈利能力。综合指数的起始日期为 2022 年 12 月 1 日。综合指数的创建日期为 2022 年 11 月 7 日。指数管理账户收取费用会降低其绩效:指数则不会。您不能直接投资指数。罗素 1000 指数是一个非管理指数,用于衡量罗素 3000 指数中 1,000 家最大公司(按市值计算)的表现。过去的表现并不能保证未来的结果。前十大持股所列的前十大持股仅反映该策略的长期投资。不包括短期投资。持股可能会发生变化。所列持股不应被视为购买或出售特定证券的建议。每种证券均按策略中持有的证券总市值的百分比计算,不包括衍生品头寸的使用(如适用)。投资组合分析定义市盈率是每股收益乘以该数字以估计股票的价值。”
预测性逆合合成一直是有机化学的长期目标,13 - 16,使用深神网络取得了明显的进步。17,18通过大量的有机反应(例如Scifinder 19和Reaxys)的商业数据库的可用性,这些机器学习成功得到了实现。目前尚不存在20种无机材料合成反应的商业数据库。但是,由于文献中已经有成千上万的成功材料综合报告,因此发表论文的文本挖掘合成食谱可以提供广泛的专家知识来源,以培训机器学习模型,以实现预测性无机材料合成。在2016年至2019年之间,I‡是劳伦斯·伯克利国家实验室Gerbrand Ceder研究小组的博士后研究员,并参加了31 782固体合成食谱的文本挖掘21和35 675基于解决方案的合成食谱22。在这里,我在尝试构建机器学习(ML)模型以从该数据集构建机器学习模型(ML)模型的回顾性帐户。顺便说一句,这个故事遵循Gartner的“炒作周期”,23,它通过(1)技术触发,(2)inded期望的峰值,(3)幻灭谷,(4)启蒙运动的斜坡,以及(5)生产力的平稳。这里的观点是我自己的,不一定是我的合着者在文本挖掘出版物中共享的。在这里,我们首先审查用于构建文本开采食谱数据库的自然语言处理策略。然后,我们根据数据科学的“ 4 Vs”评估了数据集,并表明数据集的数量,品种,真实性和速度的限制。尽管其中一些局限性源于文本挖掘中的技术问题,但我们认为这些局限性主要源于化学家过去如何探索和合成材料的社会,文化和人为偏见。24我们表明,在此文本挖掘数据集上训练的机器学习模型成功地捕获了化学家对材料合成的看法,但并没有对如何最好地合成新颖材料的实质性新的指导见解。另一方面,我们发现该数据集中最有趣的食谱实际上是异常的配方,即在固态合成中违反常规直觉的配方。这些异常的食谱也相对罕见,这意味着它们在uence回归或分类模型中不会显着。通过手动检查一些异常食谱,我们就固态反应的进行方式以及如何选择增强反应动力学和靶材料的选择性的前体提出了一个新的机械假设。这一假设推动了一系列高可见性的后续研究,25 - 28在经验上验证了我们假设的机制,这些机制是从文本开采的文献数据集中收集的。