摘要:在计算中包括海面电流,可以通过负风能输入来潮湿的中尺度涡流,并且具有涡流寿命的潜在影响。在这里,我们研究了斜力斜体反气旋涡流,但要采用理想化的高分辨率高分辨率数值模型,遭受绝对(无海面电流)和相对(包括海面电流)的风应力。这项研究的结果表明,相对风应力耗散表面平均动能(MKE),并且还通过Ekman泵送整个水柱产生额外的垂直运动。风应力卷曲 - 诱导的Ekman泵送产生额外的巴罗诊所转化(平均平均动能电位),发现通过增加深MKE来抵消表面MKE的阻尼。对相对风应力的缩放分析 - 诱导的斜压转化和相对风应力阻尼确定这些数值的结果,表明额外的能量转换抵消了相对风应力阻尼。更重要的是,发现风应力卷曲 - 诱导的Ekman泵送可以改变表面电势涡度梯度,从而导致涡流的早期不稳定。因此,涡流不稳定性和最终的涡流衰变的开始是在模拟中以相对风应力的较短时间尺度进行的。
对为期 4 个月的滑翔机任务进行了分析,以评估亚热带北大西洋西部边界反气旋涡旋中的湍流耗散。涡旋(半径 < 60 公里)的核心低位势涡度在 100 至 450 米之间,最大径向速度为 0.5 ms21,罗斯贝数 < 20.1。湍流耗散是根据滑翔机飞行模型得出的垂直水速推断出来的。耗散在涡旋核心中受到抑制(< = 53 102 10 W kg21),在其下方增强(.102 9 W kg21)。升高的耗散与垂直速度和压力扰动的准周期结构相一致,表明内部波是耗散的驱动因素。启发式射线追踪近似法用于研究导致湍流耗散的波浪-涡旋相互作用。射线追踪模拟与两种可能导致耗散的波浪-涡旋相互作用相一致:近惯性波能量被涡旋的相对涡度捕获,或内部潮汐(在附近的大陆坡产生)进入涡旋剪切的临界层。后一种情况表明,表征海洋盆地西部边界的强烈中尺度场可能充当“漏墙”,控制内部潮汐向盆地内部传播。