摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q
在本研究中,我们提出了一种用于基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的新型混合视觉刺激,该刺激将各种周期性运动融入传统的闪烁刺激 (FS) 或模式反转刺激 (PRS)。此外,我们研究了每种 FS 和 PRS 的最佳周期运动,以增强基于 SSVEP 的 BCI 的性能。通过根据四个不同的时间函数(用无、平方、三角和正弦表示)改变刺激的大小来实现周期性运动,总共产生八种混合视觉刺激。此外,我们开发了滤波器组典型相关分析 (FBCCA) 的扩展版本,这是一种用于基于 SSVEP 的 BCI 的最先进的无需训练分类算法,可提高基于 PRS 的混合视觉刺激的分类准确性。 20 名健康个体参加了基于 SSVEP 的 BCI 实验,以区分四种不同频率的视觉刺激。评估了平均分类准确率和信息传输率 (ITR),以比较基于 SSVEP 的 BCI 对不同混合视觉刺激的性能。此外,还评估了用户对每种混合视觉刺激的视觉疲劳程度。结果,对于 FS,当除 3 秒外的所有窗口大小都加入正弦波形的周期运动时,报告的性能最高。对于 PRS,方波的周期运动在所有测试窗口大小中显示出最高的分类准确率。两种最佳刺激之间的性能没有观察到显著的统计差异。据报道,正弦波周期运动的 FS 和方波周期运动的 PRS 的平均疲劳分数分别为 5.3 ± 2.05 和 4.05 ± 1.28。因此,我们的结果表明,与传统的 FS 和 PRS 相比,具有正弦波周期运动的 FS 和具有方波周期运动的 PRS 可以有效提高 BCI 性能。
与疾病相关的人类遗传变异范围从单碱基对替换到兆碱基重复、缺失和重排 1-3 。可以在人类细胞中安装、纠正或补充这些致病变异的基因编辑方法有可能促进对遗传疾病的了解,也可能实现新的治疗方法 4、5。过去十年来,已经开发出几种基于 CRISPR-Cas 系统的哺乳动物细胞基因编辑方法 6,包括核酸酶 7-9 、碱基编辑器 10、11 和主要编辑器 12 ,每种方法都有可能解决一组已知的致病序列变化。CRISPR-Cas 核酸酶(如 Cas9)可用于通过创建导致不受控制的插入/缺失混合的 DSB 来破坏基因。此外,配对的 Cas9 核酸酶策略可以介导长度从约 50 到 > 100,000 个碱基对的基因组 DNA 序列的靶向删除 13 。通过提供线性供体 DNA 序列,可以通过末端连接或同源性定向修复 (HDR) 过程在单个切割位点或成对切割位点之间定向插入新的 DNA 序列 14, 15。单核酸酶和成对核酸酶编辑方法虽然用途广泛,但它们也存在相当大的缺点。DNA 供体敲入伴随着高效的 indel 副产物 16,因为在大多数细胞类型中,HDR 与末端连接过程相比通常效率低下 17, 18。使用成对核酸酶进行靶向删除会产生多种副产物 13, 19,而且缺失的精确位置受到 PAM 可用性的限制。此外,在靶位或脱靶位点的 DSB 可促进大面积缺失 20-22、染色体异常 23、24 和染色体碎裂 25。 DSB 倾向于生成不良副产物和染色体改变的复杂混合物 26 - 28,这在应用基于核酸酶的编辑来操作较大的 DNA 序列时带来了相当大的挑战,特别是在治疗环境中。
weyl semimetals(WSM)中的电荷密度波(CDW)已被证明会诱导一个外来的轴心绝缘相,其中CDW的滑动模式(Phason)充当动力轴承纤维,从而产生大型的正磁磁性[Wang等人。修订版b 87,161107(r)(2013); Roy等人,物理。修订版b 92,125141(2015); J. Gooth等人,自然575,315(2019)]。在这项工作中,我们预测动态应变会诱导由CDW覆盖的时间 - 反转 - (Tr-)不变的WSM中的散装轨道磁化。我们将这种效果称为“动态压电效应”(DPME)。与[J. Gooth等人,Nature 575,315(2019)],在这项工作中引入的DPME发生在散装组合中(即,在散装中的静态和空间均匀,并且不依赖于闪光,例如phason。通过研究低能效果理论和最小的紧密结合(TB)模型,我们发现DPME源自有效的山谷轴纤维,以将电磁体的ELD结合使用,以应变诱导的Pseudo-gauge-gauge-gauge-eLD。尤其是在先前作品中研究的压电效应的特征是2D浆果曲率,而DPME代表了源自Chern-Simons 3-Form的基本3D菌株效应的第一个例子。我们进一步发现,DPME在CDW顺序参数相位的临界值时具有不连续的变化。我们证明,当DPME中有跳跃时,系统的表面会经历拓扑量子相变(TQPT),而整体则保持不变。因此,dpme在trimiant weyl-cdw中提供了边界TQPT的大量标志。
1 北京大学口腔医学院·医院口腔材料科,北京 100081;dandan66x@126.com (DX);yuanshenpo@163.com (SY) 2 口腔数字化医疗与材料国家工程实验室,国家口腔疾病临床研究中心,口腔数字医学与材料北京市重点实验室,国家药品管理局口腔材料重点实验室,卫生部数字化口腔工程与技术研究中心,北京 100081;drwangfeilong@126.com 3 北京大学口腔医学院·医院修复科,北京 100081 4 国家药品管理局医疗器械技术审评中心,北京市海淀区 100081;panshuo@cmde.org.cn * 通信地址:liuyunsong@hsc.pku.edu.cn (YL); xuyx@hsc.pku.edu.cn (YX)
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 11 月 2 日发布。;https://doi.org/10.1101/2021.11.01.466790 doi:bioRxiv 预印本
我们提出了在互动约束下实施量子位的任意排列的方法。我们的协议利用了以前的方法来快速逆转沿路径的Qubits顺序。在长度为n的路径上,给定最近的邻里相互作用,我们表明存在常数ϵ≈0。034使得量子路由时间最多为(1 -ϵ)N,而任何基于交换的协议至少需要时间n -1。这代表了基于交易的路由方法的第一个已知量子优势,并且还为现实的架构(例如网格)提供了改进的量子路由时间。fur -hoverore,我们表明我们的算法接近量子路由时间为2 N/ 3的量子路由时间均匀随机排列,而基于交易的协议则需要渐近时间为n。此外,我们考虑了稀疏的置换量k≤n量子位,并在路径上,在路径上最多可在n/ 3 + o(k 2)上给出量子路由时间,最多为2 r/ 3 + o(k 2)在半径为r的一般图上。
我们提出了在互动约束下实施量子位的任意排列的方法。我们的协议利用了以前的方法来快速逆转沿路径的Qubits顺序。在长度为n的路径上,给定最近的邻里相互作用,我们表明存在常数ϵ≈0。034使得量子路由时间最多为(1 -ϵ)N,而任何基于交换的协议至少需要时间n -1。这代表了基于交易的路由方法的第一个已知量子优势,并且还为现实的架构(例如网格)提供了改进的量子路由时间。fur -hoverore,我们表明我们的算法接近量子路由时间为2 N/ 3的量子路由时间均匀随机排列,而基于交易的协议则需要渐近时间为n。此外,我们考虑了稀疏的置换量k≤n量子位,并在路径上,在路径上最多可在n/ 3 + o(k 2)上给出量子路由时间,最多为2 r/ 3 + o(k 2)在半径为r的一般图上。
摘要ITOH-TSUJII反转算法在发现诸如椭圆曲线密码学等密码应用中的倒数方面构成了主要贡献。在本文中,提出了一种新的HEX ITOH-TSUJII反转算法来计算由NIST推荐的不可舒服的三通式产生的二进制的二进制式栅极阵列(FPGA)平台上的多重逆逆向算法。基于十六进制算法的六角itoh tsujii反转算法是由十六进制电路和四链链构建的。此组合改善了资源利用率。实验结果表明,与现有实施相比,所提出的工作具有更好的区域时间性能。关键词:现场可编程栅极阵列(FPGA),ITOH-TSUJII反转算法(ITA),查找表(LUT),有限字段(FF)分类:集成电路
许多研究表明,激光纹理化之后,新处理过的金属表面由于存在微/纳米结构而呈现亲水或超亲水状态[3–5]。当激光纹理化表面较长时间暴露在环境空气中时,可以观察到润湿性从超亲水性转变为超疏水性[5–10]。因此,激光纹理化的金属表面在环境条件下储存时可实现超疏水性。不同金属的转化时间不同。例如,经纳秒激光纹理化的铜或黄铜需要大约 11–14 天才能变为超疏水[11,12]。Jagdheesh 等人[13]报道,激光烧蚀铝的润湿性转化需要大约 40 天。而飞秒激光烧蚀不锈钢的润湿性变化比其他金属需要更长的时间(52–60 天)[14,15]。