开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。局部信息通过创建复杂的关联(称为信息扰乱)在系统中传播,因为此过程阻止从局部测量中提取信息。在这项工作中,我们开发了一个改编自固态 NMR 方法的模型来量化信息扰乱。扰乱是通过时间反转 Loschmidt 回波 (LE) 和多重量子相干实验来测量的,这些实验本质上包含缺陷。考虑到这些缺陷,我们推导出非时间序相关器 (OTOC) 的表达式,以基于测量信息传播的活跃自旋数量来量化可观察的信息扰乱。基于 OTOC 表达式,退相干效应自然是由 LE 实验中未反转项的影响引起的。退相干会导致可测量程度的信息扰乱的局部化。这些效应定义了可观测的活跃自旋数量的局部化簇大小,从而确定了动态平衡。我们将模型的预测与使用固态 NMR 实验进行的量子模拟进行了对比,该实验测量了具有受控缺陷的时间反转回波的信息扰乱。从实验数据确定的量子信息扰乱的动态和其局部化效应之间具有极好的定量一致性。所提出的模型和派生的 OTOC 为量化大型量子系统(超过 10 4 个自旋)的量子信息动态提供了工具,与本质上包含缺陷的实验实现一致。
我们引入了量子陷门函数的概念。这是一个可高效计算的幺正函数,以“公共”量子态和经典字符串 x 作为输入,并输出一个量子态。该映射具有这样的特点:(i) 难以反转,即给定输出状态(和公共状态的许多副本)很难恢复 x,并且 (ii) 存在一个允许高效反转的经典陷门。我们证明了量子陷门函数可以由任何量子安全的单向函数构造而成。该结果的直接结果是,假设存在量子安全的单向函数,则存在:(i) 具有量子公钥的公钥加密方案,以及 (ii) 两消息密钥交换协议,假设存在适当的量子认证通道概念。
Matt Fredrikson、Somesh Jha 和 Thomas Ristenpart,《利用置信度信息的模型反转攻击和基本对策》,载于第 22 届 ACM SIGSAC 计算机和通信安全会议论文集(ACM,2015 年),1322–1333 页。
该芯片是一个16位I/O扩展器。它通过I 2 C或SMBus接口为大多数MCU系列提供远程GPIO扩展。CA9555有两个8位输入端口寄存器、输出端口寄存器、配置寄存器(设置为输入或输出)和极性反转寄存器(高电平有效或低电平有效)。上电后,16个I/O引脚配置为输入,并带有至V CC 的内部弱上拉电阻。然而,主机可以通过设置配置寄存器位单独将I/O引脚启用为输入或输出。如果没有外部信号施加到CA9555的I/O引脚,由于内部上拉电阻,电压电平为高。每个输入或输出的数据都存储在相应的输入或输出端口寄存器中。输入端口寄存器的极性可以通过极性反转寄存器反转。主机可以使用上电复位功能复位芯片,复位可能是由于超时或其他不当操作引起的,该功能将所有寄存器复位为默认状态并初始化 I 2 C/SMBus 状态机。该芯片具有输出锁存功能,可在使用高电流能力直接驱动 LED 时保护芯片。当任何输入状态与其对应的输入端口寄存器状态不同时,CA9555 开漏中断输出将被激活,并用于向系统主机指示输入状态已发生变化。可用封装:TSSOP-24、QFN4x4-24 封装。
isaamlic。以氯仿和等质醇混合物的含量和苯酚体积的一半和一半的量子和一半。.ex:对于5个样品,等分试样2 ml苯酚(1,250 +备用)和等分试样5 ml Isoamlic混合物 +氯仿(200μLISO +4800μL氯仿)。7。等分试样500μL(有时是样品数量)异丙醇酒精。8。移液器250μl苯酚,然后250μl氯仿 +同含同生醇。通过反转摇动。9。摇动30分钟(75速),然后以最高速度离心5分钟。10。小心地卸下上清液(〜400μl),请勿卸下所有内容,以免删除界面。11。与上一步一样,加入400μl氯仿混合物 +同醇酒精,然后通过反转和离心摇动。12。编程4°C的离心机13。卸下上清液,加入500μl异丙醇,通过反转均匀,以13000 g至15分钟的离心液均匀。14。为离心机编程室温。15。删除上清液,请注意不要去除颗粒,加入1毫升的70%乙醇,通过观察颗粒和离心剂在室温下5分钟到13000 g,一两次均质。16。除霜超纯水。17。除去所有酒精,然后将其干燥约15分钟,然后将沉淀物重新降低150μl的超纯水。在冰箱中过夜,第二天将其保持-20°C
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
将来自22名参与者的ALS反转参与者与PGB主要队列(n = 103)和目标ALS验证队列(n = 140)进行了比较。两个遗传基因座符合统计显着性的预定标准(两侧置换p≤0.01),并在绘制细节后仍然是合理的。第一个基因座的铅单核苷酸变体(SNV)为rs4242007(主要同类gwas OR = 12.0,95%CI 4.1至34.6),它在IGFBP7内含子中,并且在近乎完美的链接中与Snnv in in In iN in igfbpp7 spection in igfbp7中。两个SNV都与EQTL数据集中的额叶皮层IGFBP7表达降低有关。值得注意的是,3个反转,但没有一个典型的进步个体(n = 243),对于RS4242007而言。鉴于附近基因转录的相关影响,位于Grip1附近的第二个基因座的重要性是不确定的。
摘要 我们研究了光场与一维 (1D) 半无限波导末端附近的原子耦合的三种放大过程。我们考虑了两种设置,其中驱动在三能级原子的裸基或修饰基中引起粒子数反转,以及一种设置,其中放大是由于驱动的两能级原子中的高阶过程引起的。在所有情况下,波导的末端都充当光的镜子。我们发现,与开放波导中的相同设置相比,这以两种方式增强了放大。首先,镜子迫使原子的所有输出都朝一个方向传播,而不是分成两个输出通道。其次,镜子引起的干涉使得能够调整原子中不同跃迁的弛豫速率比,以增加粒子数反转。我们量化了由于这些因素而导致的放大增强,并表明可以在超导量子电路实验中用标准参数证明这一点。
1 在一些较早的文献中,偏序被写成相反的形式,即“不细化”,因此顶部和底部以及连接和相遇互换([1];[2])。 2 在范畴论中,子集的概念推广到子对象或“部分”的概念,“部分”的对偶概念(通过反转箭头获得)是划分的概念。” [5,第 85 页]