训练图分类器能够区分健康的大脑和功能障碍的大脑,可以帮助识别与特定认知表型相关的子结构。然而,图形分类器的仅预测能力是神经科学家的兴趣,这些神经科学家有很多用于诊断特定精神疾病的工具。重要的是对模型的解释,因为它可以提供新颖的见解和新假设。在本文中,我们提出了反事实图作为对任何黑盒图形分类器进行局部事后解释的一种方法。给定图形和一个黑框,反事实是一个图形,虽然与原始图具有很高的结构相似性,但在其他类别中由黑框分类。我们提出并进行了反对反事实图搜索的几种策略。我们针对具有已知视觉反事实的白盒分类器的实验,表明我们的方法虽然启发式,但可以产生非常接近最佳的方法。最后,我们展示了如何使用反事实图来构建全局解释,从而正确捕获了不同黑盒分类器的行为并为神经科学家提供有趣的见解。
我们最初的努力旨在满足各军种和作战指挥官的迫切需求。然而,随着 sUAS 技术和扩散继续以挑战国防部在当前范式下有效响应能力的速度发展,显然我们不能仅仅依靠物资解决方案。相反,我们必须重新审视如何应对 sUAS 给联合部队带来的日益严峻的挑战,方法是考虑和开发涵盖整个条令、组织、培训、物资、领导和教育、人员、设施政策 (DOTMLPF-P) 范围的解决方案。该战略为解决本土、东道国和应急地点的危险和威胁等各种 sUAS 问题提供了框架。随着技术和系统的发展,该战略将需要持续评估以确保国防部跟上步伐。要取得成功,国防部所有利益相关方必须齐心协力。各军事部门、作战司令部、联合参谋部和其他国防部部门将持续关注 sUAS,确保美国及其盟友和伙伴国家采取最有效的应对措施。
9.1 与维护相关的整体 FMO 设施绩效 ...................................... 9-1 9.2 维护的管理支持 .............................................. 9-2 9.2.1 管理层的承诺和参与 ...................................... 9-2 9.2.2 管理组织和管理 ...................................... 9-3 9.2.3 技术支持 .............................................. 9-3 9.3 维护实施 .............................................. 9-7 9.3.1 工作控制 .............................................. 9-7 9.3.2 维护完成 .............................................. 9-9 9.3.3 维护材料控制 .............................................. 9-11 9.3.4 维护人员培训和人员配备要求 .................................. 9-11 9.4 LCV-300 的维护事故后分析 ...................................... 9-12 9.4.1 部件描述 .............................................. 9-12 9.4.2 LCV-300 的故障机理分析 ...................................... 9-13
在 2005 年春季训练中加入了四分卫的行列,并通过更多的训练不断进步……进入秋季,成为四分卫 Jonathan Wilson 的坚实替补……一名优秀的运动员,拥有强大的跑步本能和改进的传球技巧……在 2005 年春季比赛中发挥出色,完成了 6 次传球中的 4 次,传球距离为 55 码,还跑了 28 码,达阵得分。2004- 没有参加比赛,被红衫队禁赛。高中 - 北卡罗来纳州威尔明顿市阿什利高中毕业生……2003 年投球 1,235 码,12 次达阵;冲球 1,021 码,14 次达阵,被评为阿什利高中最有价值球员……2002 年被评为学校年度最佳男运动员……还打了两年棒球……父亲 Alton Baker 在利文斯顿学院踢足球……计划主修国际研究。个人 - 全名是 Terrel Tyrone Allen……出生于 1986 年 9 月 26 日。
1.0 目标................................................................................................................................1 1.1 COTS/NDI、改进型 COTS/NDI 和定制电源........................................................................2 1.1.1 COTS/NDI.................................................................................................................2 1.1.2 改进型 COTS/NDI.......................................................................................................2 1.1.3 定制.......................................................................................................................3 1.2 电源系统开发.......................................................................................................3 1.2.1 顶层系统要求和规范开发....................................................................................4 1.2.2 权衡研究....................................................................................................................6 1.2.3 建模和仿真....................................................................................................8 1.2.4 设计评审....................................................................................................................8 1.2.5 电源系统集成和测试.............................................................................................9 1.2.6 系统设计和对电源系统组件的影响.....................................................................9 1.3 电源性能规格 ................................................................................................................9 1.4 市场调研 ......................................................................................................................10 1.4.1 电源采购/开发时间 ..............................................................................................11 1.4.2 电源选择/开发工时 ..............................................................................................11 1.5 电源权衡 S/选择 ......................................................................................................13 1.5.1 总拥有成本 .............................................................................................................13 1.5.2 电源可靠性 .............................................................................................................14 1.6 团队合作 ......................................................................................................................17 1.7 风险管理 ......................................................................................................................18 1.8 注意 S ......................................................................................................................18
印刷纸质封面的原始示例从第一个封面开始拍摄,到最后一个有印刷或插图印记的封面结束,或者以第二个封面结束,具体取决于成本。所有其他原始示例均从包含印刷或插图印记的第一页开始拍摄,并以包含此类印记的最后一页结束。
正在进行的博士学位 Christophe Piveteau 2021 硕士 Christian Bertoni,统计力学中的信息论和重正化 2020 硕士 Paula Belzig(与科隆的 D. Gross 合作),研究稳定器 de Finetti 定理 - 在量子信息处理中的应用 2019 硕士 Dina Abdelhadi,使用部分平滑熵的量子协议界限 2019 硕士 Sami Boulebnane(与 MP Woods 合作),量子时钟和非拆除测量 2018 博士 David Sutter(与 R. Renner 合作),近似量子马尔可夫链 2018 硕士 Luca Petrovi´c,表面码矩形形状的效率 2016 硕士 Álvaro Piedrafita,基于互补性的通道自适应解码策略 2016 硕士 Raban Iten(与 D. Sutter 合作),不同量子 Renyi 之间的关系发散 2016 硕士 Axel Dahlberg,量子纠错码 2015 博士 Felipe Lacerda(巴西利亚大学访问学生),容错量子计算的经典泄漏恢复能力 2015 硕士 Stefan Huber(与 VB Scholz 合作),位置和动量的操作驱动不确定性关系 2014 硕士 Dominik Waldburger(与 D. Sutter 合作),量子极化码 2012 硕士 David Sutter(与 F. Dupuis 合作),仅使用极化码实现任何 DMC 的容量
雷帕霉素复合物1(MTORC1)的机械靶标是在真核生物中广泛发现的多蛋白质复合物。它通过感应各种细胞外和细胞内输入(包括氨基酸 - ,生长因子 - ,葡萄糖和与核苷酸相关的信号)来作为中心信号节点来协调细胞生长和代谢。有充分的文献证明,MTORC1被募集到溶酶体表面,在该表面被激活,因此调节了与调节蛋白质,脂质和葡萄糖代谢有关的下游效应。mTORC1是协调各种组织中养分和能量的储存和动员的中心节点。然而,新兴的证据表明,营养疾病引起的MTORC1过度激活导致发生多种代谢疾病,包括肥胖和2型糖尿病,以及癌症,神经退行性疾病疾病以及衰老。MTORC1途径在调节代谢疾病的发生中起着至关重要的作用,这是发展有效治疗策略的主要目标。在这里,我们关注的是对MTORC1如何整合代谢输入以及MTORC1在调节营养和代谢疾病调节中的作用的最新进展。Adv Nutr 2022; 13:1882–1900。
Pustimbara博士于2019年开始研究5-氨基甲酸(ALA),同时继续在日本进行研究。 ALA是一种天然存在的氨基酸,通常在体内产生,但也可以在补充剂和治疗中外源使用。目前,它通常用于用于医疗目的的癌症的光动力诊断,但ALA具有在其他疾病的药物治疗中的巨大潜力。 Pustimbara博士开始了他的研究,该研究对在干细胞培养物中使用ALA的试验进行了一种称为线粒体脑病,乳酸性酸中毒和中风样发作(称为Melas综合征)的罕见疾病。迄今为止,尚无对疾病产生重大影响的治疗方法,Pustimbara博士发现,使用IPS细胞系并将ALA和SFC一起使用可以改善与线粒体功能相关的蛋白质的表达。此外,我们对脂肪细胞祖细胞的分化过程进行了研究,发现使用ALA和SFC大大减少了在3T3-L1分化过程结束时产生的脂肪细胞量。 Pustimbara博士在他的博士研究中使用了ALA和Hemin在癌细胞中使用的不同组合。 Hemin是一种含有氯的含铁的卟啉,由血液中常见的血红素组形成。使用胃癌细胞的研究表明,ALA和HEMIN可以通过增加细胞内PPIX积累和活性氧的产生来降低癌细胞的存活高达18%(Pustimbara等,2024)。除了第一个发现这一点的研究外,我们发现ALA和HEMIN的结合可能是在癌症疾病中使用光动力疗法的另一种选择。