定量脑电图和脑电波定量脑电图,有时也称为脑映射,是通过数字技术测量头皮表面的电模式,主要反映皮质电活动或“脑电波”。脑电波以各种频率出现。有些很快,有些很慢。这些脑电图波段的经典名称是 delta、theta、alpha 和 beta。神经反馈是一种生物反馈训练,它使用脑电图 (EEG) 作为控制视觉、听觉或触觉反馈的主要工具。这种反馈用于在大脑中产生学习。这种学习可以提高大脑的适应性和自我调节能力。然而,重要的是,您要了解并同意这种训练过程。一些研究证明,该疗法可有效治疗多种疾病,如注意力缺陷多动障碍 (ADD/ADHD)、焦虑症、抑郁症、自闭症、轻度脑外伤、强迫症等,但其中许多领域仍在进行进一步研究。如果您需要,我可以提供迄今为止的研究书目,或者您可以查阅 www.isnr.org (国际神经反馈与研究学会的网站)以获取全面的神经反馈书目。神经反馈训练是通过使用一种称为脑电图 (EEG) 的灵敏电子仪器来完成的,该仪器可测量个人脑电活动的频率和强度,并立即将此信息发送到高速计算机。这些脑电波信号几乎立即被计算机处理,并以视觉和听觉反馈的形式呈现给个人。然后,临床医生使用复杂的计算机程序帮助患者学习如何使用这种“神经反馈”来识别和更好地调节他们的脑电波模式。对于儿童,计算机程序有时会以游戏的形式出现。通过持续的反馈、指导和练习,患者学会产生所需的脑电波模式。起初,脑电波活动的变化是短暂而短暂的,然而,在相对较短的时间内,新的模式会在与更好的表现和整体健康相关的频率范围内变得更加牢固。一旦患者练习得足够熟练,能够集中注意力并重新调整他们的脑电波模式,训练就结束了。您对神经反馈训练的个人反应或结果无法预测。根据我们的经验,每个人的旅程和结果各不相同,您对该计划的承诺是最重要的方面。我们对您的承诺是提供最好的培训,并公开、诚实地解决您的问题和疑虑。重要的是,我们会定期监测进度并根据需要重新评估,以确定是否应该继续培训。为此,我们将要求您完成频繁的评估,以衡量我们将要跟踪的目标症状。您能否尽可能始终如一地进行这些评估至关重要,因为它提供了有关培训如何影响您的信息,这对您至关重要
通过分享和解读内心状态实现相互理解具有社会意义。先前的研究表明,人们认为脑机接口 (BCI) 是一种隐性交流认知状态的合适工具。在本文中,我们进行了一项在线调查(N=43),以确定隐性共享认知状态的系统的设计参数。为了实现这一目标,我们设计了一个名为“SpotlessMind”的研究探测器,以艺术的方式与他人分享大脑占用情况,同时考虑旁观者的体验来引出用户反应。结果显示,98% 的人希望看到该装置。人们会将其用作一种开放的姿态和一种沟通的媒介。抽象视觉、听觉和体感描述是在可理解性和用户隐私保护之间的良好权衡。我们的工作支持设计引人入胜的原型,以促进个人之间的同理心、认知意识和融合。
Harrison Lee,Samrat Phatale,Hassan Mansoor,Thomas Mesnard,Johan Ferret,Kellie Lu,Colton Bishop,Ethan Hall,VictorCărbune,Abhinav Rastogi,Sushant Prakash Prakash ICML 2024 div>Harrison Lee,Samrat Phatale,Hassan Mansoor,Thomas Mesnard,Johan Ferret,Kellie Lu,Colton Bishop,Ethan Hall,VictorCărbune,Abhinav Rastogi,Sushant Prakash Prakash ICML 2024 div>
帕金森运动症状与基底神经节中病理上增加的β振荡有关。虽然药理学治疗和深脑刺激(DBS)降低了这些病理振荡,并随着运动性能的提高而降低了这些病理振荡,但我们着手探索神经反馈作为内源性调节方法。我们通过植入的DBS电极实施了病理性亚丘脑β振荡的实时处理,以提供深脑电气神经反馈。患者在训练后几分钟内通过视觉神经反馈进行了视觉控制的β振荡活动。在一次单小时的训练中,β振荡活动的减少逐渐变得更强大,我们观察到了运动性能的提高。最后,即使去除视觉神经反馈后,对深脑活动的内源性控制也是可能的,这表明在短期内保留了神经反馈获得的策略。此外,我们观察到2天后学习的心理策略在没有神经反馈的情况下进行了改善。进一步训练深脑神经反馈可能会通过使用神经反馈优化的策略来改善症状控制,从而为帕金森患者提供治疗益处。
- 培训语言模型以人为反馈的指示 - 直接偏好优化:您的语言模型是秘密的奖励模型 - 精细的人类反馈为语言模型培训提供了更好的奖励 - 开放问题和从人类反馈>的强化基本限制
#2 太空技术如何帮助环境 尽管太空任务成本高昂,但为太空探索而开发的技术可以在很多方面造福地球。[虽然太空任务需要大量投资,但它们产生的技术创新为地球带来了多种环境效益。] 例如,NASA 在太空中的工作推动了清洁能源的进步,例如更好的太阳能电池板。这些太阳能电池板很重要,因为它们帮助我们利用来自太阳的可再生能源,而不是燃烧化石燃料,从而造成污染和气候变化。此外,太空探索还推动了水净化和废物管理等领域的新技术,这些技术可以帮助创造一个更清洁、更可持续的地球。
● 2.1.2 安全围栏和太阳能发电场基础设施(包括电缆)必须远离村庄周围和穿过太阳能发电场的网络中的任何人行道,并且从人行道上看不到。安全围栏必须全部被自然轮廓、景观、树篱或树木遮挡,以便人行道上仍能感受到乡村风情。同样,自然植被缓冲区也将为野生动物提供栖息地。对于从 Balsham 延伸经 West Wratting 到 Weston Colville 的古老 Ickneild 路尤其如此,但应该适用于剑桥郡议会的权威人行道数据库 1 中标记的所有人行道,该数据库的摘要显示在附录 A 中。实际上,所有这些道路都经常被 West Wratting 的许多居民和游客使用;它们不需要单独识别。
摘要 自我调节学习 (SRL) 是一种认知能力,在促进学生有效制定策略、监控和评估自己的学习行为方面具有明显意义。研究表明,缺乏自我调节学习技能会对学生的学业成绩产生负面影响。有效的数据驱动反馈和行动建议被认为对 SRL 至关重要,并显著影响学生的学习和表现。然而,向每个学生提供个性化反馈的任务对教师来说是一个重大挑战。此外,由于大多数课程的学生人数众多,为个性化建议确定适当的学习活动和资源的任务对教师来说也是一个重大挑战。为了应对这些挑战,一些研究已经探讨了基于学习分析的仪表板如何支持学生的自我调节。这些仪表板提供了一些关于学生成功和失败的可视化(作为反馈)。然而,虽然这种反馈可能有益,但它并没有提供有见地的信息或可行的建议来帮助学生提高学业水平。可解释的人工智能 (xAI) 方法已被提出来解释此类反馈并从预测模型中产生见解,重点关注学生在正在进行的课程中需要采取的相关行动以改进。此类智能活动可以作为数据驱动的行为改变建议提供给学生。本论文提供了一种基于 xAI 的方法,可以预测课程表现并计算信息反馈和可操作的建议,以促进学生的自我调节。与以前的研究不同,本论文将预测方法与 xAI 方法相结合,以分析和操纵学生的学习轨迹。目的是通过为该方法提供的预测提供深入的见解和解释,为学生提供详细的、数据驱动的可操作反馈。与单独的预测相比,该技术为学生提供了更实用和有用的知识。所提出的方法以仪表板的形式实施,以支持大学课程中学生的自我调节,并对其进行了评估以确定其对学生学业成绩的影响。结果表明,仪表板显着提高了学生的学习成绩并提高了他们的自我调节学习技能。此外,研究发现,所提出的方法提出的建议对学生的表现产生了积极影响,并帮助他们进行自我调节。
第三,探索也许能让我们找到另一种治疗方法。宇宙中有很多地方,所以你不知道会发生什么,也不知道会发现什么。最近出现了一个新概念:寻找新事物可以激发你的创造力和好奇心。你可以找到任何东西,所以为什么要花钱,只买一件你想要的东西,而不是[而不是在探索太空时将我们的投资限制在即时解决方案上],也许[可能导致]找到解决气候变化、污染或森林砍伐等问题的方法?