可以使用XEP数据采集软件直接从可访问的信号通道中读取直流悬臂偏转信号。可以通过将信号发送到锁定放大器来读取悬臂偏转信号的交流部分,该放大器可以以ω频率读取信号的部分,或以2Ω频率读取信号的部分。一起,这三个信号可用于获取有关样品电气特性的信息。例如,电容在方程式中以电容与尖端间距的比率为c/d。如果Z反馈回路保持尖端到样本距离恒定,则C/D与电容成正比。ω信号是上面公式(2)中标记的术语(b)的系数,包含C/D和表面电势的贡献。假设V DC和V AC是已知的,您仍然无法将电容的贡献和对测量ω信号的表面电势分开。然而,2Ω信号是上面标记(c)的术语的系数,仅包括电容的贡献。因此,2Ω信号可用于使Ω信号归一化,从而隔离表面电势的贡献。
北极地区环境复杂程度空前,地缘政治意义重大,正处于现代人工智能 (AI) 方法和深刻的土著见解共同塑造的转折点。本文深入探讨了人工智能在北极气候数据科学中的作用,强调了其在吸收和分析大量数据集(从高分辨率卫星图像到土著社区古老的口头传统)方面的变革性影响。我们探索了人工智能子领域(包括机器学习、神经网络和深度学习)利用双重知识系统提供北极不断变化的动态全景的能力。此外,本文还批判性地评估了人工智能带来的挑战,从数据完整性问题到可能加剧错误的反馈回路。北极不断变化的地缘政治影响和潜在的运营风险加剧了更广泛的地缘政治影响,进一步凸显了在该地区应用人工智能的必要性。总之,该研究强调了技术进步与尊重土著知识之间的基本平衡,为北极的可持续未来提供了战略建议。
信息物理系统 (CPS) 是计算和物理过程的集成。嵌入式计算机和网络通常通过反馈回路来监控和控制物理过程,其中物理过程影响计算,反之亦然。这种系统的经济和社会潜力远远大于已经实现的潜力,世界各地都在大力投资开发该技术。存在相当大的挑战,特别是因为这种系统的物理组件引入了与通用计算在质量上不同的安全性和可靠性要求。此外,物理组件在质量上不同于面向对象的软件组件。基于方法调用和线程的标准抽象不起作用。本文探讨了设计此类系统所面临的挑战,并特别提出了当今的计算和网络技术是否为 CPS 提供了充分的基础的问题。结论是,仅仅改进设计流程、提高抽象水平或验证(正式或非正式地)基于当今抽象的设计是不够的。要充分发挥 CPS 的潜力,我们必须重建计算和网络抽象。这些抽象必须以统一的方式涵盖物理动力学和计算。
自然界的适应始于亚细胞、分子水平,生物分子级联的微妙相互作用协调着细胞的无数功能。这些细胞的混合活动成为多细胞系统复杂行为的表现。大自然提供了一系列令人眼花缭乱的例子,展示了智能功能的变化。然而,在合成构造领域,人类已经成功设计了哪些系统?我们的技术力量的界限是什么?与大自然的库相比,人类的成就显得相当微不足道。在智能生物中观察到的复杂行为源于其组成元素之间的集体相互作用和反馈回路,从而产生了新的特性和现象。为了开发表现出更像大脑的智能行为的大规模工程系统,我们必须首先设计出新的分子结构和算法,用于分子尺度的适应和学习。我在这里介绍的研究是朝着这些目标迈出的一小步。我将展示由 DNA 制成的新型分子系统的设计,这些系统表现出复杂的神经计算和学习行为。
信息物理系统 (CPS) 是计算和物理过程的集成。嵌入式计算机和网络监视和控制物理过程,通常使用反馈回路,其中物理过程影响计算,反之亦然。此类系统的经济和社会潜力远远大于已实现的潜力,全球正在投入大量资金来开发该技术。存在相当大的挑战,特别是因为此类系统的物理组件引入了与通用计算在质量上不同的安全性和可靠性要求。此外,物理组件在质量上不同于面向对象的软件组件。基于方法调用和线程的标准抽象不起作用。本文探讨了设计此类系统所面临的挑战,并特别提出了当今的计算和网络技术是否为 CPS 提供了足够的基础的问题。本文得出的结论是,改进设计流程、提高抽象级别或验证(正式或以其他方式)基于当今抽象的设计是不够的。为了充分发挥 CPS 的潜力,我们必须重建计算和网络抽象。这些抽象必须以统一的方式包含物理动力学和计算。
神经形态计算领域的主要目标是构建机器,以并行且能量效率良好地执行复杂的任务,从而模仿大脑的各个方面。多亏了新的计算体系结构,这些机器可以彻底改变高性能计算,并找到对传感器和机器人进行本地低能计算的应用程序。在神经形态计算中使用有机和软材料在许多方面都具有吸引力,因为它允许更好地与生活物质整合到信号处理中无缝融合感应,并最终在封闭反馈回路中刺激。的确,有机材料的机械性能不仅可以与组织的机械性能相匹配,而且这些涉及离子的设备的工作机制(除电子外)与人类生理兼容。有机材料的另一个优点是潜在的潜力,可以引入依靠可与独一无二的形式相关的增材制造的新型制造技术。这个领域仍然很新生,因此,仍然提出了许多概念,而没有明显的赢家。此外,有机神经形态的应用领域(生物学和生物整合都非常吸引人)要求从材料到系统的共同设计方法。
5 无线通信生态系统研究组,电气工程系,工程学院,朱拉隆功大学,曼谷 10330,泰国 电子邮件:a amir.p@chula.ac.th,b,* lunchakorn.w@chula.ac.th(通讯作者) 摘要。信息物理系统 (CPS) 是计算和物理过程的集成。物理过程由嵌入式计算机和网络监视和控制,它们通常具有反馈回路,物理过程会影响计算,反之亦然。为了简化系统分析,可以用高保真虚拟模型取代昂贵的物理工厂,这些模型为数字孪生 (DT) 提供了框架。本文旨在简要回顾 DT 和 CPS 的最新进展。回顾了 CPS 中的三个主要组成部分,包括通信、控制和计算。此外,通过智能制造、第六代无线技术 (6G)、健康、生产、能源等方面的第四次工业革命中 DT 的主要应用,讨论了实施实际 DT 所需的主要工具和方法。最后,讨论了主要限制和未来评论的想法,然后简要介绍了 DT 在 CPS 中的实际应用。关键词:数字孪生、信息物理系统、控制、通信、计算、5G、人工智能、机器学习、计算智能。
在人类诞生之前,子宫中的信号和激素是胎儿的,外界的终生不断变化的环境。在出生的第一年,活动和睡眠周期在其轴上的24小时旋转中同步。在过去的几十年中,研究揭示了这些内部,普遍存在的生物细胞时钟可以影响人类中枢神经系统发展的某些最重要方面。神经元连通性以突触连接,树突状刺和轴突投影为特征,这是我们的认知功能和日常行为的组成部分。当神经元连通性的这些属性被破坏,失调或随着时间的流逝而恶化时,可能会出现多种认知缺陷,包括学习和记忆中的缺陷以及焦虑和抑郁等行为异常。衰老与昼夜节律内部时钟的鲁棒性下降有关,也导致了几种神经系统疾病,例如阿尔茨海默氏病(AD)。本评论将讨论从出生到死亡的昼夜节律系统和神经可塑性的一些研究。转录 - 翻译反馈回路(TTFL)是昼夜性细胞节奏的核心昼夜节律机制。称为核心循环,此
这项工作的核心目标是将综合模型 GENeSYS-MOD 生成的不同欧洲脱碳情景的成本效益供热从国家级缩小到奥地利的社区级,从而揭示 2050 年区域供热的热密度。我们假设区域供热包括地热、合成气、氢气、废物和大型热泵作为可再生热源。结果确定了 2050 年奥地利 68 个社区的区域供热,占社区总数的 6%。我们发现 GENeSYS-MOD 结果能够涵盖区域供热的当地趋势,因为预计在当地层面的热密度中有很大一部分达到了表明经济可行性的值。应进一步研究如何将当地确定的区域供热和热密度以反馈回路的形式返回到更综合的模型(例如 GENeSYS-MOD)中。这允许在大型上层模型中细化假设,从而提高欧洲层面路径的合理性和现实性。 © 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要 近场电感耦合无线电力传输 (WPT) 系统已广泛应用于脑植入应用。然而,由于发射器 (TX) 和接收器 (RX) 线圈之间的不同变化会导致接收功率变化,因此高效可靠的电力传输具有挑战性。本文提出了一种利用负载移位键控的闭环自适应控制系统,该系统采用 0.5 lm 标准 CMOS 工艺设计,用于为植入负载提供所需的功率,以补偿这些差异。所提出的 TX 和 RX 线圈均采用 FR4 基板制造,尺寸分别为 10 9 10 mm 和 5 9 5 mm。通过改变功率放大器的电源电压,该自适应闭环系统调节发射功率,向负载提供 5.83 mW 的功率,这大约是阈值窗口的中点。该系统在空气和组织介质中分别实现了 8 毫米距离下的 9% 和 8% 的电力传输效率。初步结果表明,与开环模块相比,带有反馈回路的微型 WPT 模块在 TX 和 RX 线圈之间的 8 毫米距离下实现了 8% 和 3% 的效率提升。