4 系光学荣誉教授博士S. Kück 电话:(0531) 592-4010 电子邮箱:stefan.kueck@ptb.de 部门 4.1 光度测定和光谱辐射测定博士A. Sperling 电话:(0531) 592-4100 电子邮件: armin.sperling@ptb.de 部门 4.2 图像与波动光学博士E. Buhr 电话:(0531) 592-4200 电子邮箱:egbert.buhr@ptb.de 部门 4.3 量子光学和长度单位博士H. Schnatz 电话:(0531) 592-4300 电子邮件:harald.schnatz@ptb.de 部门 4.4 时间和频率 Dr. E. Peik 电话:(0531) 592-4400 电子邮件:ekkehard.peik@ptb.de 部门 4.5 应用辐射测量博士S. Winter 电话:(0531) 592-4500 电子邮箱:stefan.winter@ptb.de 青年研究员小组 4.01 功能纳米系统计量学博士S. Kroker 电话:(0531) 592-4530 电子邮箱:stefanie.kroker@ptb.de 青年研究员小组 4.02 量子技术博士AW Schell 电话:(0531) 592-4025 电子邮箱:andreas.schell@ptb.de 实验量子计量研究所 (QUEST) 教授、博士PO Schmidt 电话:(0531) 592-4700 电子邮箱:piet.schmidt@ptb.de 摘自 PTB 组织结构图(2020 年 12 月) 首页:PTB 开发的 LIS-A LED 发光强度标准灯。
内容实验细节图S1。使用0.15m钠( - ) - dibenzoyl-l-tartrate的洗脱完成了L,L-1 4+和D,D,D,D-1 4+的对映体分离的示例。图S2。 使用阳离子 - 交换色谱法分辨出L,L -L -1 4+,D,D,D -1 4+和D,L -1 4+的圆形二色光谱。 表S1。 [D,D -1] Cl 4的晶体数据摘要。 表S2。 [L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。图S2。使用阳离子 - 交换色谱法分辨出L,L -L -1 4+,D,D,D -1 4+和D,L -1 4+的圆形二色光谱。表S1。 [D,D -1] Cl 4的晶体数据摘要。 表S2。 [L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。表S1。[D,D -1] Cl 4的晶体数据摘要。表S2。 [L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。表S2。[L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。[L,L -1] Cl 4的晶体数据摘要。图S3。用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。顶部:在5mm Tris中添加CT-DNA,25mm NaCl。底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。箭头指示每个发射图S7的L最大值。用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。图S8。图S9。lambda堆叠实验显示了活的MCF -7细胞中A)D,D -1 4+和L -1 4+的发射曲线。MCF7细胞的CLSM图像使用两个单独的检测通道,分别为670-700 nm(红色)和630-640 nm(黄色),对于D,D,D -1 4+(TOP)和L,L,L -1 4+(底部)。
通过上转换的能量光子。敏化剂通常被共掺入UCNP,以吸收激发辐射并将能量传递到激活剂中。众所周知,在合成过程中,必须仔细控制宿主晶格中活化剂离子的浓度,以避免交叉删除并保持高且高转换的效率。增加UCNP中的感应离子浓度可以提高光子的吸收能力,从而增强上转换Lumine-Scence(UCL)。4然而,超出一定阈值(1-5 mol%),敏化器离子浓度的任何进一步增加都将导致发光强度显着降低。5这种现象通常被称为“浓度淬火”。6此外,增加UCNP中植物掺杂的灯笼离子的浓度可能会导致颗粒内部更具内部的能量传递过程,从而导致较高的能量向表面散发,并且这种现象通常称为表面淬火。浓度淬灭效应也与表面淬火紧密耦合。5由于表面淬火和浓度淬灭,UCNP的量子产率(QY)较低。然而,不同的核心 - 壳结构旨在提高UCL强度和UCNP的QY。惰性壳,例如Nayf 4,Nagdf 4或CAF 2,可以钝化表面缺陷并减少表面淬火。另一方面,可以构建活性壳以将较高的敏化剂浓度分散在不同的层中并减少集中猝灭。7,8同时构建核心 - shell
室外照明标准 § 81-1。标题 § 81-2。定义 § 81-3。一致性 § 81-4。适用性 § 81-5。一般室外照明标准 § 81-6。按类型划分的室外照明标准 § 81-7。禁止照明 § 81-8。特殊用途的附加要求 § 81-9。豁免 § 81-10。计划提交和合规证据 § 81-11。批准的建造或安装/操作材料和方法 § 81-12。违规、法律行动和处罚 § 81-13。信息表 § 81-1。标题本章应称为“室外照明标准”§ 81-2。目的本章的目的和意图是通过最大限度地减少可能影响公民和游客的享受、健康、安全和福利的光污染并降低能源消耗,平衡提供高效实用照明的目标,为冷泉村的居民和企业提供必要的安全、实用和安全,但仍保持村庄的风景和审美特征。这旨在减少眩光问题,最大限度地减少光线侵入公共空间和私人财产,并保护哈德逊高地天空的夜间特征。§81-1。定义本章中使用的下列术语应具有指示的含义:坎德拉 - 一坎德拉是国际单位制 (SI) 中的单位,等于源在给定方向上的发光强度,该源发射频率为 540 × 10 12 Hz 的单色辐射,并且在该方向上的辐射强度为每立体角 1/683 瓦。英尺烛光 - 英尺烛光是照度或光强度的非国际单位制单位。一英尺烛光代表“一英尺外一烛光光源投射到表面的照度”。该单位通常用于使用美国习惯单位的地区的照明布局。全截止 - 水平面上方没有直接向上照明的灯具。