我们基于时间分辨的光致发光光谱证明了实验结果,以确定INGAAS量子点(QDS)的振荡器强度和内部量子效率(IQE)。使用减少应变层,这些QD可用于制造电信O波段中发出的单光子源。通过确定在QD位置的光密度在QD的位置的变化下,在QD的位置确定辐射和非辐射衰减速率,以评估振荡器的强度和IQE。为此,我们对QD样品进行测量,以实现由受控的湿化学蚀刻过程实现的封顶层的不同厚度。从辐射和非辐射衰减速率的数字建模依赖于上限层厚度,我们确定长波长Ingaas QD的振荡器强度为24.6 6 3.2,高IQE(85 6 10)的高IQE(85 6 10)。
案例号。NEPR-IN-IN-IN-IN-IN-20021-0002主题:6月10日事件提交机密报告并要求进行机密待遇。6月10日事件提交报告的动议并要求
该技术背后的理念很简单:通过在固体火箭发动机现有的燃料基础上引入液体单推进剂,可以控制火箭的功率和推力角度,使其更加灵活和可控。Exquadrum 创始人 Kevin Mahaffy 表示,如果将目前的固体火箭发动机技术想象成烟花火箭,点燃引信后就可以逃跑,那么单推进剂系统就像在烟花上加了一个操纵杆,这样你就可以控制烟花的飞行位置和速度。
。CC-BY-NC 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2021 年 7 月 6 日发布。;https://doi.org/10.1101/2021.07.05.451192 doi:bioRxiv 预印本
基于可再生能源的能源经济已被提出作为摆脱对化石燃料依赖的一种出路。可充电锂离子电池 (LIB) 预计将在 2030 年内满足未来的电动汽车、电动航空和固定电网储能目标。然而,LIB 需要有毒且昂贵的金属,如钴、镍、锰等才能发挥作用。锂和钴的地质不对称分布以及以采矿为中心的地缘政治和不道德的童工,导致原材料成本大幅波动。它影响了电动汽车中使用的大型 LIB 组的市场价格稳定性。在双碳电池中,两个电极均由碳质材料组成,电解质中的离子会嵌入和脱嵌到电极基质中。由零过渡金属组成的新型双碳电池对环境无害。它可以将整体电池成本降低 20-25%,并有望抑制市场价格的不可预测性。使用普遍存在的碳替代重金属作为电极活性材料和集电器,具有轻便灵活等优点。制备的5.0伏(标称电压4.6伏)电池的能量密度约为100瓦时/公斤,进一步改造后可扩展到150瓦时/公斤。研究小组认为,开发的电池可能有潜力用于高压应用、复杂的电池供电医疗设备、电动汽车的再生制动系统和固定电网。研究小组负责人苏伦德拉·库马尔·马莎博士表示:“这项研究将进一步突破能量密度极限,他们的远大愿景包括将双碳系统作为更便宜的LIB替代品引入印度市场。”这项研究由印度理工学院海得拉巴分校的博士生 Shuvajit Ghosh 先生和 Udita Bhattacharjee 女士在 Surendra K. Martha 博士的指导下与美国橡树岭国家实验室和印度孟买海军材料研究实验室合作完成。海军研究委员会 (DRDO) 支持该项目。详细的实验和讨论可以在题为“锂基可充电电池中沥青涂层碳纤维的多功能利用 - Ghosh, S.、Bhattacharjee, U.、Patchaiyappan, S.、Nanda, J.、Dudney, NJ 和 Martha, SK”的文章中找到,该文章发表在《先进能源材料》上,2021 年,2100135(DOI:10.1002/aenm.202100135)。
环境活动家已经利用了基层努力来塑造化石燃料的看法和公共政策。尽管他们可能有良好的意图,真诚和情感投资,但他们也对能源的产生和传递方式,使用何处以及我们作为一个国家需要多少能量而被误解了。作为天然气专业人士,我们了解什么,方式和原因。现在是时候让天然气行业动员并将行动放在我们对该行业的知识和热情和清洁能源的未来之后。我们认识到先进能源技术创新在维持美国经济成功并为未来提供可持续的国内能源供应方面的关键作用。让我们说出来。
目的。[1-3]此外,等离子体在包括太空推进和生物医学技术在内的许多领域都起着重要作用。[4-6]阴极管和等离子体的一代需要外部电源设备,但是不幸的是,由于其重量较重,而且体积较大,因此该设备无法便携。因此,高压应用在没有电力供应的太空,战场和偏远地区等严酷的环境中存在严重限制。基于Triboelectrification和静电诱导的工作机制的Triboelectric纳米发育仪(TENGS)[7-11]可以在我们的圆形或人类运动中的机械运动中产生电力,而无需外部电源。[12–16]到目前为止,Teng产生的功率已被用作可植入的医疗设备,发光二极管,液晶显示器,传感器和低功耗电子设备的能源。[11,17–20]考虑到自动高压和便携性,Teng可以被视为高压应用的理想驾驶源。在这项工作中,我们提出了一个基于锯齿的电极的Teng(SE-TENG),该Teng(SE-Teng)基于火花放电来产生超高功率输出,以直接驱动高压操作设备。接触两种不同的摩擦材料,然后
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
在这项工作中,我们基于电信O波段中发出的Ingaas量子点(QD)开发和研究单光子源。量子设备是使用原位电子束光刻制造的,结合了热压缩键合,以实现背面金镜。我们的结构基于INGAAS/GAAS异质结构,其中QD发射通过减少应变层在1.3 L m处向电信O带红移。QD通过阴极发光映射预选的QD嵌入带有背面金镜的台面结构中,以提高光子萃取效率。在脉冲非共振润湿层激发下进行的光子自动相关测量在高达40 K的温度下进行,显示纯单光子发射,这使得设备使用Stirling Croimoolers兼容独立操作。使用脉冲P-shell激发,我们实现了单光子的发射,高光子抑制G(2)(0)¼0.0276 0.005,是(12 6 4)%(12 6 4)%(12 6 4)%的AS测量的(96 6 6 10)%和(96 6 10)%和相关的连接时间(212 6 25)的可见性(12 6 4)%。此外,结构显示出5%的提取效率,这与该光子结构的数值模拟所期望的值相当。我们设备的进一步改进将通过光纤维实现量子通信。
印度卡纳塔克邦 - 560074 摘要 以前,残疾患者无法交流和阅读,因此与外界的联系是通过人机交互进行的;例如跟踪眼部运动和监测脑电波。现在,人们不太愿意使用脑部运动监测设备,因为患者必须佩戴它。我们的项目是专门为 MND 患者设计的智能系统。如果患者在床上患有 MND 疾病,则无法与护理提供者交谈。在本研究中,一个组件支持向他人寻求帮助,因为它既是基本又是休闲的方法,旨在帮助 MND 患者。本研究为残疾患者(主要是残疾人)提供了一种辅助设备。每个人都知道残疾患者无法与外界交流,因此该系统帮助他们用自己的眼睛交流并通过护理人员满足他们的需求。与当前结果相比,它同样能提供有效而准确的结果。如果监护人不在场或患者的需求不满足,则会向其亲属发送一条消息,其中包含患者所需的先决条件。企业可以利用此研究通过虚拟键盘进行密码验证,其中依赖于闪烁与虚拟键盘中的特定组件的单独比较。我们的研究重点是开发一种实时视频处理方法,该方法可以完全独立于头部方向(白天或晚上)识别眼睛的眨动。根据与患者先决条件相关的闪烁,识别患者并将其转换为语音并作为输出提供。除此之外,还创建了一个消息警报系统,以便监护人和亲属能够更熟悉患者的先决条件。关键词:——运动神经元病 (MND)、眨眼、视频处理、瘫痪、消息、警报、要求、虚拟键盘。