自亨利·贝克勒尔于 1896 年发现天然辐射、居里夫人发现镭和钋并因此获得诺贝尔奖、被誉为放射性药物之父的威廉·H·布赖纳为其实践铺平道路以来,放射性药物在医学中的应用不断发展壮大。2023 年,出现了一些关键趋势,影响着阿尔法发射体治疗的前景和应用。已有超过 17 亿美元的资金流入放射性药物领域,凸显了该治疗领域的潜力和强劲增长。在过去一年中,出现了新的收购、发布和交易,涉及新型放射治疗药物和新创建的肽-放射性同位素药物偶联物。监管机构已为放射性药物的激增做好了准备,首批 CDRP 计划旨在加快商业制造、FDA 批准和营销授权。
摘要:从量子传感到量子计算,量子发射器在众多应用中必不可少。六方氮化硼 (hBN) 量子发射器是迄今为止最有前途的固态平台之一,因为它们具有高亮度和稳定性以及自旋-光子界面的可能性。然而,对单光子发射器 (SPE) 的物理起源的理解仍然有限。在这里,我们报告了整个可见光谱中 hBN 中的密集 SPE,并提出证据表明大多数这些 SPE 可以通过供体-受体对 (DAP) 很好地解释。基于 DAP 跃迁生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作为物理理解 hBN 中的 SPE 及其在量子技术中的应用迈出了一步。关键词:六方氮化硼、单光子发射器、供体-受体对、量子光学■简介
5 澳大利亚悉尼科技大学变革性元光学系统卓越中心,澳大利亚新南威尔士州乌尔蒂莫 2007 年,澳大利亚 * 这些作者的贡献相同。 通讯作者 igor.aharonovich@uts.edu.au 摘要 六方氮化硼 (hBN) 中的色心已经成为集成量子光子学的有吸引力的竞争者。在这项工作中,我们对在蓝色光谱范围内发射的 hBN 单个发射器进行了详细的光物理分析。发射器采用不同的电子束辐照和退火条件制造,并表现出以 436 nm 为中心的窄带发光。光子统计以及严格的光动力学分析揭示了发射器的势能级结构,这表明缺乏亚稳态,理论分析也支持这一点。潜在缺陷可以具有在 hBN 带隙下半部分具有完全占据缺陷态和在带隙上半部分具有空缺陷态的电子结构。总的来说,我们的研究结果对于理解 hBN 中新兴蓝色量子发射器系列的光物理特性非常重要,因为它们是可扩展量子光子应用的潜在来源。简介单光子发射器 (SPE) 被广泛认为是建立和部署量子通信和计算的关键推动者,这涉及按需生成高纯度单光子发射 1-3 。六方氮化硼 (hBN) 因其独特的性质而备受关注,包括以 6 eV 为中心的宽层相关带隙、高激子结合能、存在光学活性自旋缺陷以及能够承载室温 (RT) 亮 SPE 4-11 。hBN 还因其用作深紫外范围的新兴光电材料而备受关注 12 。最近,通过阴极发光 (CL) 测量发现了在蓝色光谱范围内发射的 hBN 色心,称为“蓝色发射器” 13 。这组发射器通常显示超亮、光谱稳定和窄带发射,其零声子线 (ZPL) 始终以 436 nm 为中心 13, 14 。结果表明,这些缺陷与 4.1 eV 处的特征紫外线发射密切相关 9, 14-16 。对 hBN 进行预辐照,例如在氮气气氛中进行高温退火,可产生更高的特征紫外线发射产量,从而产生更多的蓝色色心 15 。此外,在低温下,与 hBN 中的其他量子发射器相比,这些缺陷具有稳定的发射,线宽为亚 GHz,光谱扩散最小 15 。最近,两
摘要:我们提出了一种由二氧化钛 (TiO 2 ) 亚波长光栅制成的双谐振纳米结构,以提高 Cd x Zn 1 − x Se y S 1 − y 胶体量子点 (QDs) 在用 ∼ 460 nm 的蓝光激发时发射波长为 ∼ 530 nm 的颜色下转换效率。通过光栅谐振和波导模式的混合,可以在 QD 层内创建大的模式体积,从而导致大的吸收和发射增强。特别是,我们实现了偏振光发射,在特定角度方向上最大光致发光增强约 140 倍,在收集物镜的 0.55 数值孔径 (NA) 内总增强约 34 倍。增强包括吸收、Purcell 和外耦合增强。我们实现了绿色 QDs 的总吸收率为 35%,颜色转换层非常薄,约为 ∼ 400 nm。这项工作为设计用于微型 LED 显示器、探测器或光伏应用中的吸收/荧光增强的大体积腔体提供了指导。关键词:导模共振、二氧化钛、介电纳米天线、颜色转换、胶体量子点、微型 LED 显示器
表 III:主要仪器类别概述.................................................................................................250 表 IV1:α 发射体...................................................................................................................253 表 IV2:β 发射体...................................................................................................................253 表 IV3:γ 发射体.........................................................................................................................254 表 IV4:Ge 能谱仪测量的光谱中的背景γ 线....................................................257 表 IV5:γ 线:按能量列出....................................................................................................258 表 IV6:γ 能谱测定中可能出现的干扰....................................................................262 表 IV7:不同核事故中释放的特征放射性核素....................................................................264 表 IV8:反应堆事故释放中的特征 γ 发射体.............................................................................265 表 VI:反应堆事故中的油.............................................................................................................267
二维材料中的光学活性缺陷,例如六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),是一类极具吸引力的单光子发射体,具有高亮度、室温操作、发射体阵列的位点特定工程以及可通过外部应变和电场进行调谐的特性。在这项工作中,我们展示了一种新方法,可在无背景的氮化硅微环谐振器中精确对准和嵌入 hBN 和 TMD。通过 Purcell 效应,高纯度 hBN 发射体在室温下表现出高达 46% 的腔增强光谱耦合效率,这几乎超出了无腔波导发射体耦合的理论极限和之前的演示。该设备采用与 CMOS 兼容的工艺制造,不会降低二维材料的光学性能,且对热退火具有稳定性,并且在单模波导内量子发射器的定位精度达到 100 纳米,为具有按需单光子源的可扩展量子光子芯片开辟了道路。
钙钛矿量子点 (QD) 可以通过精确控制其成分和尺寸来化学合成,覆盖整个可见光谱范围,近年来已成为一类具有高量子产率的新型发射体。此外,它们的尺寸相关量子限制可以解释某些多晶钙钛矿薄膜令人惊讶的高发射效率,由于其晶粒结构,这些薄膜可能表现为效率相当低的发射体。5,6 为了加速其发射速率并进一步提高其量子产率(这在处理单光子量子发射体时至关重要),已经实施了不同的方案。7,8 目标是利用谐振器内的场强度增强,从而实现更高的 Purcell 因子。事实上,对钙钛矿进行图案化并将其沉积在其他材料上的能力使得它们可以与各种谐振器相结合:分布式反馈布拉格反射器、9 – 12
I. 介绍 Zr/O/W(100) 肖特基电子发射体以其高亮度和良好的发射稳定性而闻名 [1],广泛应用于电子显微镜和电子束光刻系统。肖特基发射体由单晶钨 (100) 尖端组成,该尖端点焊在钨加热丝上,可加热至 1800 K。我们正在为并行电子光刻系统开发直径为 1 毫米的肖特基发射体的微型版本。发射体尖端相对于电子柱中各个电极的对准非常关键。由于热机械原因,尖端在 x − y − z 方向上的位置会随时间而变化,这也会改变电子发射和电子光学。对于数百个发射器的阵列,必须将阵列中各个发射器之间的电子光学特性差异降至最低。在标准肖特基发射器中,尖端在其使用寿命期间在 z 方向上位移 50 µ m。为了补偿这种位移,我们建议使用硅橡胶室温硫化 (RTV) 566 对尖端进行原位位置对准。RTV 566 在 − 115 ◦ C–260 ◦ C 范围内具有良好的热稳定性、低排气性以及与不同材料组良好的粘合性 [2]。RTV 566 广泛应用于各种机械和电子工程应用,如汽车加热软管、芯片键合、太阳能电池、空间应用和火花塞帽。控制 z 轴运动的拟议设计示意图如图所示。1.在
参与者名单是从 DRSA 数据库中选出的;该数据库包括全球大约 230 个联系人,但不可避免地存在一些重复和冗余。活动中共有 47 名参与者,他们全都采集了含有 ~/'Y 发射体的样品,其中 24 人还采集了 (x 和 ~ 发射体样品。与往年一样,参与者来自三组:对核工业有主要兴趣的人,即核工业本身和政府部门;对核工业有次要兴趣的人,例如地方当局和研究组织;第三,对核工业没有特殊兴趣的人,例如合同实验室,最后,首次包括不在英国的实验室。参与者在第 12 部分按相关组织的字母顺序列出。
使用 JMP® Clinical Version 8.0,学生 t 检验用于比较平均值并得出 p 值。(SAS Institute Inc.,北卡罗来纳州卡里),结果