制造和发射火箭仍然是一件非常危险的事情,在我们积累经验的同时,在可预见的未来,这种危险还会继续存在。发射太空飞行器不太可能像商业航空旅行那样成为一项常规任务——在读到这篇文章的人的一生中肯定不会。科学家和工程师们不断研究更好的方法,但如果我们想继续进入外层空间,就必须继续接受风险。作为东部和西部靶场太空发射三角洲指挥官的指定代表,安全办公室确保公众、发射场人员和公共资源免受太空运载工具、有效载荷及其相关支持系统和设施固有危险的影响。这些危险在正常运行过程中存在,可能会导致事故和异常。安全办公室努力确保从项目开始到完成最后一次任务,靶场上的操作都是安全的。在评估和尽量减少发射和发射前操作所带来的危险方面,三角洲的安全办公室被称为靶场安全。 1 靶场安全从项目首次推出之日起就与靶场用户密切合作。靶场安全力求在实现最终安全目标的方法上保持最大的灵活性,同时不对靶场用户施加过度或过于严格的要求。所有靶场用户为实现安全目标提出的建议都会得到仔细考虑。靶场用户和靶场安全之间的早期和持续协调是这一伙伴关系成功的关键因素。1
1.32 重量和重心................................................................................60 第 2 章 安全与保障.................................................................................168 2.1 范围...............................................................................................168 2.2 安全。....................................................................................168 2.2.1 安全分类。.............................................................................168 2.2.2 保持无弹头 109A 认证。.............................................................168 2.2.3 有弹头 109A。.............................................................................168 2.2.4 运输安全。.............................................................................168 2.2.4.1 收货。................................................................................169 2.2.4.2 转移。................................................................................169 2.3 安全。................................................................................169 2.3.1 爆炸物安全量距离 (ESQD) 电弧限制。.................169 2.3.1.1 ........................................................................................169 2.3.1.2 ........................................................................................170 2.3.1.3 ........................................................................................170 2.3.2 TCM 危险成分。................................................................170 2.3.3 许可证。........................................................183 3.2.1.3 REM 加热器功率。...................................................................................170 2.3.4 与复合材料分解/燃烧相关的危险。.......170 2.3.4.1 ..............................................................................................171 2.3.4.2 ..............................................................................................171 2.3.4.3 ..............................................................................................171 2.3.4.4 ..............................................................................................171 2.3.5 CLS 发射后废水。.........................................................................171 第 3 章 功能描述 .............................................................................182 第 I 部分。章节组织 .............................................................................182 3.1 范围 .............................................................................................182 第 II 部分。概述................................................................................183 3.2 电力系统。..............................................................183 3.2.1 发射前电力。..............................................................183 3.2.1.1 转换器/操作电源。..............................................................183 3.2.1.2 巡航导弹 (CM) 识别电源。..............................................................183 3.2.1.4 监控/复位电源。..............................................................183 3.2.1.5 直流监控/复位电源返回。..............................................................183 3.2.1.6 底盘/静态接地。................................................................183 3.2.2 启动/增强电力。.........................................................183 3.2.2.1 CMA 电池激活。.........................................................184 3.2.2.2 CMGS 电池激活。.........................................................184 3.2.2.3 REM 电池激活。.........................................................184 3.2.2.4 总线隔离。.........................................................184 3.2.2.5 首次运动。................................................................184 3.2.3 巡航电力。................................................................184 3.2.4 RSS 热电池激活。......................................................185
本手册实施 AFI 91-202(美国空军事故预防计划),并与美国空军部和美国联邦航空管理局关于空军部靶场和设施发射和再入活动的备忘录一致。本出版物介绍了空间系统司令部 (SSC) 靶场采用的、由太空发射三角洲 (SLD) 实施的靶场安全计划。它定义了安全职责和权限,划定了来自或进入 SSC 靶场的所有活动的政策、流程、所需批准和批准/豁免级别,描述了调查和报告事故和事件,包括成立事故临时安全委员会和保存数据的说明。靶场活动包括靶场用户计划在 SSC 靶场执行的任何活动(航空测试/操作、导弹测试/操作、太空发射、发射前处理、再入活动等)。这些靶场活动包括运载火箭、再入飞行器 (RV) 和有效载荷的生命周期,从设计概念、测试、检验、组装和发射到进入轨道,包括航天器(或有效载荷)与运载火箭分离、可重复使用运载火箭 (RLV)/RV 从轨道再入、运载火箭部件未到达轨道的飞回/着陆或撞击。本出版物还定义了总部空间系统司令部 (HQ SSC)、太空发射三角洲 (SLD) 和靶场用户的职责,并描述了位于加利福尼亚州范登堡太空部队基地 (VSFB) 的 SLD 30 [西部靶场 (WR)] 和位于佛罗里达州帕特里克太空部队基地 (PSFB) 的 SLD 45 [东部靶场 (ER)] 的太空发射三角洲安全办公室 (SLD/SE) 和靶场用户界面。靶场用户应熟悉 SSCI
4 校正 56 4.1 辐射校准 56 4.1.1 传感器校准的主要元素 56 4.1.1.1 绝对辐射校准 – 从辐射到 DN 并反之 56 4.1.1.2 均匀性校准 57 4.1.1.3 光谱校准 57 4.1.1.4 几何校准 58 4.1.2 校准方法 58 4.1.2.1 发射前校准 58 4.1.2.2 机载校准 59 4.1.2.3 替代校准 59 4.2 大气 – 从辐射到反射或温度\发射率 60 4.2.1 将不同日期的图像校准为类似值 62 4.2.2 内部平均相对反射率 (IARR) 63 4.2.3 平场 63 4.2.4 经验线 63 4.2.5 大气建模 64 4.2.5.1 波段透射率计算机模型 66 4.2.5.2 逐线模型 67 4.2.5.3 MODTRAN 67 4.2.5.4 太阳光谱中卫星信号的第二次模拟 – 6s 代码 69 4.2.5.5 大气移除程序 (ATREM) 70 4.2.5.6 ATCOR 72 4.2.6 图像的温度校准 73 4.2.7 材料的热性能 73 4.2.8 从热图像中的辐射中恢复温度和发射率 77 4.3 几何校正 79 4.3.1 几何配准 80 4.3.1.1 平面变换 81 4.3.1.2 多项式变换83 4.3.1.3 三角测量 83 4.3.1.4 地面控制点 84 4.3.1.5 重新采样 85 4.3.1.6 地形位移 86 4.3.2 LANDSAT – 几何特性 90 4.3.2.1 TM 几何精度 90 4.3.2.2 TM 数据处理级别 90 4.3.2.3 原始数据 90 4.3.2.4 系统校正产品 90 4.3.2.5 地理编码产品 91 4.3.2.6 级别 A – 无地面控制点 91 4.3.2.7 级别 B – 有地面控制点 91
TRMM降水雷达(PR)是第一台星载降雨雷达,也是TRMM上唯一能够直接观测降雨垂直分布的仪器。TRMM PR的频率为13.8 GHz。PR可以实现陆地和海洋的定量降雨估计。PR还可以提供降雨高度信息,这对基于辐射计的降雨率反演算法很有用。PR的覆盖范围足够小,可以研究不均匀降雨对低频微波辐射计通道相对粗糙覆盖范围的影响。PR的主要设计和性能参数如表0-2所示[Kozu等,2001]。PR的观测几何如图0-1所示。在正常观测模式下,PR 天线波束在 ±17 的横向轨道方向上扫描,结果从一端到另一端的扫描宽度为 220 公里。PR 的天线波束宽度为 0.71 ,在 ±17 的扫描角度内有 49 个观测角度箱。当 TRMM 处于 350 公里的标称高度时,水平分辨率(覆盖区大小)在天底为 4.3 公里,在扫描边缘约为 5 公里。TRMM PR 的距离分辨率为 250 米,等于天底的垂直分辨率。对于每个观测角度箱,雷达回波采样是在海面和 15 公里高度之间的距离门上进行的。对于天底入射,还收集了高达 5 公里高度的“镜像”。此外,还部分收集了表面回波(扫描角度在 ±9.94 以内)和降雨回波(扫描角度在 ±3.55 以内,高达 7.5 公里)的“过采样”回波数据。这些过采样数据将用于精确测量表面回波水平和融化层结构。根据发射前地面测试和轨道测试确定,最小可检测 Z(对应于噪声等效接收功率)从 23.3 dBZ(基于规范要求)提高到 20.8 dBZ。这主要是由于发射功率增加和接收器噪声系数降低。
网络安全对于维护全球经济和军事基础设施至关重要。这里的共同点是,世界基础设施依赖于卫星技术的使用和能力。因此,本文建议制定一个详细的风险分析标准,应用于全球太空保险市场,重点是网络安全。本文的第一部分旨在介绍太空保险市场在卫星成本以及常见网络安全威胁方面的当前趋势的背景信息。对卫星网络安全威胁的重视不容小觑。随着黑客的网络攻击越来越普遍,需要采取主动而不是被动的方式来应对对卫星系统的网络攻击,因为卫星的使用对日常生活至关重要。下一节继续对太空保险和一般网络安全保险制度进行比较分析。虽然太空保险和网络安全保险有重叠之处,但必须对在轨卫星的网络安全保护进行区分。本节发现,网络安全保险通常为组织提供一系列工具,例如预防建议和缓解支持,以增强网络相关事件的恢复能力。然而,不断变化的网络安全风险的新性质对于保险公司来说仍然难以量化和承保。相反,太空保险市场大致分为三种类型的保险:发射前保险、发射保险和在轨保险。此外,航天工业固有的风险性质意味着没有一家保险公司愿意承保卫星。尽管这个行业很独特,但本节发现太空保险市场似乎遵循传统市场的“硬”和“软”周期性。第三部分也是最后一部分采取了积极主动的方法,并提供了一个案例研究,说明如何估计卫星的网络安全保险覆盖范围。由于卫星发射的频率和规模预计会增加,本案例研究的目的是创建一个统一的风险评估标准,以应用于卫星行业。由于与太空保险相关的信息的敏感性,本节对典型太空风险组合中可能包含的内容进行了随意描述,例如:当多颗卫星一起发射时,总损失累积的可能性;以及保险价值范围广与总损失风险高相结合。
美国宇航局的连续失败不容忽视。航天飞机发射的巨额开支使美国宇航局在国际市场上失去了竞争力,无法发射用于研究天气、国际通信系统或全球表面测绘等实用卫星。在航天飞机计划开始时,美国宇航局宣布,这笔巨额投资将很快得到回报,因为它将使太空发射比一次性助推器便宜得多。但 20 年后的今天,事实却截然相反:将每磅重物发射到近地轨道的成本比其他几个国家同时开发的无人一次性助推器高出许多倍。此外,灾难和险些发生的灾难清楚地表明,航天飞机不是一种安全的发射系统。除此之外,我们还目睹了一系列大规模的失败。哈勃太空望远镜耗资 20 亿美元,但其设计缺陷十分严重,在发射前,只需花费很少的额外费用,用相当简单、高精度的测量仪器就能发现。最近的修复任务能否成功还有待观察。但修复成本(6.3 亿至 12 亿美元)必定会降低人们对修复的热情,因为修复最多不能使仪器达到最初预期的性能。需要修复的独立严重故障数量之多,无法做出良好的预测。伽利略号探测木星及其卫星的任务耗资超过 10 亿美元,可能仍会取得一些成果,但展开航天器天线时发生的机械故障将阻止其将所有结果发回地球。现在,在一系列耗资巨大的航天飞机发射失败之后,另一个耗资近 10 亿美元的重大项目——火星轨道器,也莫名其妙地失败了。同样,一颗地球测绘卫星(Landsat 系列的延续)现在正无用地漂浮在某个未知的地球轨道上。考虑到巨大的成本,一个经过精心规划的项目会遭遇如此接二连三的失败吗?20 世纪 70 年代初,人们非常仔细、详细地讨论了规划太空研究项目的问题。一些外部顾问委员会(一些由 NASA 设立,一些由白宫科技办公室设立)提出了许多详细的建议,这些建议包括:
摘要 地球同步 (GEO) 轨道区域中的大多数活跃卫星都会执行一致的定位机动,以在其整个运行寿命期间(从入轨到退役)保持在特定的地理纵向位置附近。为了避免由于卫星在物理上以相似的纵向位置彼此靠近运行,同时以相似的无线电频率传播频谱上彼此靠近的信号而导致的拥塞问题(这可能会增加卫星间碰撞或有害无线电频率干扰的威胁),卫星运营商必须在发射前从联合国专门机构国际电信联盟 (ITU) 获得空间网络许可证。自 1971 年以来,国际电信联盟已向卫星运营商授予许可证,允许其从特定轨道位置或以纵向度数衡量的地球静止轨道带的某些部分传播特定频率的信号。尽管 GEO 轨道区域确实很受欢迎,但国际电信联盟授予的空间网络许可证的数量远远超过向该区域发射的实际活跃卫星数量。本研究使用国际电信联盟空间网络列表 (SNL) 和空间网络系统 (SNS) 数据库中的空间网络申报信息以及美国太空军 (USSF) 第 18 空间控制中队 (18 SpCS) 维护并在 Space-Track.org 上公布的空间物体目录中的轨道元素数据,将国际电信联盟空间网络许可证环境与 GEO 中的活跃在轨卫星群进行比较。开发了一种将 GEO 卫星与空间网络许可证相匹配的算法,并将其应用于 2021 年 12 月 31 日之前收到的所有空间网络申报。该算法还针对截至 2022 年 1 月 1 日正在积极执行定位保持机动的所有 GEO 卫星进行了评估,将实际定位保持位置与卫星匹配许可证中规定的标称纵向位置进行比较。本文最后讨论了提交空间网络申请的国际电信联盟各成员国和使用这些申请的空间运营商的选定结果。
摘要 在欧洲航天局赫歇尔空间天文台 (HSO) 的开发框架下,IMEC 设计了用于 PACS 仪器的冷读出电子器件 (CRE)。该电路的主要规格是高线性度、低功耗、高均匀性和工作温度为 4.2K(液氦温度,LHT)时的极低噪声。为了确保高产量和均匀性、相对容易的技术可用性以及设计的可移植性,该电路采用标准 CMOS 技术实现。电路在室温下可正常工作,这允许在集成和鉴定之前进行筛选,并且对生产产量和时间有重要影响。该电路安装在 Al 2 O 3 基板上以获得最佳电气性能。在同一基板上,集成了偏置信号生成、短路保护电路和电源线的去耦电容器。这导致基板相对复杂,包含 30 多个无源元件和一个芯片,通过导电和非导电胶以及近 80 个引线键合进行集成。因为探测器阵列在发射前要冷却到 4.2K,所以必须证明安装的基板在这种温度和恶劣环境下的可靠性和发射生存力。为此,在基板安装期间要验证每个组装步骤的质量和相关可靠性。这包括验证粘合材料的兼容性、优化粘合产量以及设备的温度循环(室温和 LHT 之间)。对鉴定模型的其他测试将侧重于质子和伽马射线辐照下的电路功能、低温振动测试以证明发射生存力,以及详尽的温度循环以鉴定组装程序。本文中,我们介绍了所开发电路的完整集成和鉴定,包括飞行模型生产过程中的组装和验证以及在鉴定模型上组装方法的鉴定。关键词 低温、远红外、LHT、鉴定、读出电子电路、系统集成。一、简介 光电导体阵列照相机和光谱仪 (PACS) [1,2] 是赫歇尔空间天文台 (HSO,原名 FIRST) [3] 上的三台科学仪器之一,赫歇尔空间天文台是欧空局“地平线 2000”计划中的第四个基石任务 [4]。PACS 使用两个 Ge:Ga 光电导体阵列 (25 x 16 像素),同时对 60 至 210 µm 波段进行成像。光电探测器
太空采购与整合助理部长 里德主席、因霍夫排名成员和委员会成员们,大家早上好。感谢你们给我这个机会出席这个委员会,感谢你们通过设立这个新职位认识到太空采购的重要性。如果得到确认,我将很荣幸担任美国空军首任太空采购与整合助理部长。感谢拜登总统和奥斯汀部长支持我的提名。还要感谢肯德尔部长和琼斯副部长对我担任这一职位的能力充满信心。我对这个机会感到很兴奋,如果得到确认,我将推动太空部队的采购方向。我在国家侦察局 (NRO) 工作了 30 年,担任了 8 年的首席副主任和副采购主管,如果得到确认,我将把我管理大型组织的领导能力和推动成功太空采购的领导能力带到国防部和这个新的关键职位上。如你所知,我们的国防太空架构正处于关键时刻,我们确实有采取行动的紧迫感。国家需要超越对手,保持从太空获得的技术优势。国家需要将其太空架构与其他作战领域相结合,为其作战人员提供战略优势。国家需要使其太空架构更具弹性,以便在危机和冲突时期可以依靠它,而且国家需要迅速做到这一点。如果得到确认,我将寻求加快国防部的太空收购速度,以便更快地将新能力交到作战人员手中。根据我在太空收购方面的经验和专业知识,可以通过以下方式加快收购速度:确保在能力需求之前协调和完成需求和分析;推动早期技术风险降低和新能力的研发,以降低收购阶段的风险;利用正确的收购策略、合同类型和合同激励措施来激励速度和成功的合同执行;推动提案的成本和进度现实性;为太空采购较小的系统;推动地面系统走向更开放的架构,同时将地面软件开发成更小、更易于管理的部分;确保太空和地面作为一个系统结合在一起,在发射前做好地面准备。此外,可以通过以下方式加快采购速度:使用现有技术;限制合同变更;保持需求稳定;授权我们的项目经理并让他们对项目成功负责;让行业对结果负责;推动组织专注于满足进度、成本和技术性能承诺;创造成功执行项目的文化,同时激发紧迫感。根据我的经验,通过这些方法,可以加快太空收购的速度,并可以更快地向我们的作战人员提供能力。