根据管理协议,NASA 的责任摘要:N/A 1.1 即将完成的任务里程碑时间表: ˆ 航天器发货:2023 年第一季度 ˆ 首次发射:2023 年第二季度 1.2 任务概述:Starfish Otter Pup 任务是一艘演示太空拖船,旨在测试低地球轨道 (LEO) 中的会合、近距操作和对接 (RPOD) 技术。Otter Pup 将与客户航天器(名为 Orbiter 的 Launcher Inc. 轨道转移飞行器 (OTV))分离、接近和对接。主要有效载荷由 Starfish Space 制造,包括 Nautilus 捕获机制、CETACEAN 相对导航软件和 CEPHALOPOD 制导和控制软件。其他有效载荷(Exotrail SA 提供的电力推进推进器和 Redwire 提供的用于相对导航的 Argus 相机)集成到基于 Astro Digital Micro+ 设计的航天器总线中。这种标准化卫星平台使用反作用轮、磁矩线圈、星跟踪器、磁力计、太阳传感器和陀螺仪,无需使用推进剂即可实现精确的 3 轴指向。1.3 运载火箭和发射场:托管在 Launcher Orbiter OTV 上,由 SpaceX Falcon 9 拼车任务发射,发射场为卡纳维拉尔角太空发射中心。1.4 拟议的初始发射日期:2023 年第二季度,SpaceX Transporter-8
目录 第一章 简介 1.1 长征系列火箭及其历史 1-1 1.2 各类任务的发射场 1-4 1.2.1 西昌卫星发射中心 1-4 1.2.2 太原卫星发射中心 1-5 1.2.3 酒泉卫星发射中心 1-5 1.3 长征系列火箭发射记录 1-6 第二章 长征二号丙火箭概述 2.1 概述 2-1 2.2 技术描述 2-1 2.3 长征二号丙火箭系统组成 2-2 2.3.1 火箭结构 2-2 2.3.2 推进系统 2-4 2.3.3 控制系统 2-4 2.3.4 遥测系统 2-5 2.3.5 跟踪与安全系统 2-5 2.3.6 分离系统 2-13 2.4 CTS 简介 2-15 2.4.1 航天器适配器 2-15 2.4.2 航天器分离系统 2-15 2.4.3 轨道机动系统 2-16 2.6 长征二号丙火箭执行的任务 2-17 2.7 坐标系和姿态定义 2-18 2.8 长征二号丙火箭发射的航天器 2-19 2.9 升级为长征二号丙火箭 2-19 第三章 性能 3.1 长征二号丙火箭任务描述 3-1 3.1.1 飞行顺序 3-1 3.1.2 长征二号丙火箭/CTS 特性参数 3-4 3.2 发射能力 3-6 3.2.1 发射场基本信息 3-6 3.2.2 两级长征二号丙火箭任务性能 3-6 3.2.3 长征二号丙火箭/CTS任务性能 3-9 3.3 注入精度 3-10 3.3.1 两级 LM-2C 注入精度 3-10
• 陆军和美国海军陆战队的地面雷达 • 三维空中搜索和监视雷达系统,提供有关火炮或火箭及其发射场的精确信息 • 探测空中物体,并测量目标高度、距离和方位 • 一些空中目标很小,一些目标在 300 海里的范围内被探测到 • 除选定的作战任务外,还用于国内测试、系统校准和培训 • 空军机载雷达 • 提高飞行安全性并促进货机的编队飞行 • 编队规模可以从两架飞机编队到多机编队 • 用于国内高节奏训练行动 • 系统预计将于 2034 年腾出 3.45 GHz 频段
最后,除非我们在航天发射运营基础设施方面进行重大技术投资,否则本计划中提到的目标就无法真正实现。在提供美国寻求实现的那种太空进入能力方面,现代化和开发新发射场和设施的技术与推进和运载工具相关技术本身一样重要。一种新的运营理念,结合创新的发射处理概念(模块化设施和通用清洁发射台设计方法),辅以自动化、健康监测和人工智能,对于显著提高航天发射活动的可操作性和可靠性至关重要,同时实现总体成本的降低。
MA-1 太空舱-助推器组合体的发射和飞行一直正常,直到升空后约 58 秒,发生了原因不明的突然扰动。升空后约 60 秒,助推器显然遭受了重大结构故障,目前原因尚不清楚。在助推器故障时,太空舱和太空舱系统似乎运行正常。助推器故障后直至撞击,太空舱基本完好无损。太空舱残骸位于 14 号发射场正前方 4.6 英里处。截至撰写本文时,大约 95% 的太空舱已被回收。太空舱测试目标未达到。
本标准主要用于空间系统设施的设计和施工合同。这些要求适用于所有相关设施,包括但不限于发射场、跟踪站、数据处理室、卫星控制中心、检查站、航天器或助推器装配大楼以及任何相关的固定或移动结构,这些结构用于容纳电气和电子设备。这些要求不适用于 Lon9 Hall/战术通信系统设施(参见 MIL-STD-188-124A)。用于直接支持航天器的地面支持设备 (AGE) 的技术要求包含在 MIL-STD-1541 中。安装在地面设施(不是设施的一部分)中的设备的技术要求包含在 MIL-STD-461 中。
又有10次,速度更快。这100次的能力将超出第3代和第4代星链接卫星。降低有效载荷的成本意味着该容量只能用于国际空中货物的运输。大规模生产的2000万美元星舰和1亿美元的发射场的成本将比轨道发射低5倍,因为只会发射一个阶段。这快20倍,成本低15倍,是大型商业航空的有效载荷的4倍。资产利用率将是商业航空的五倍。从纽约到东京的半小时的战斗将意味着每天十架战斗,而不是定期航空的最多两次。
NSSL 系统包括运载火箭、发射能力、标准有效载荷接口、支持系统、任务集成(包括任务独特要求)、飞行仪表和射程接口、特殊研究、飞行后数据评估和分析、任务保证、基础设施、关键部件工程、政府任务主管支持、系统/流程和可靠性改进、培训和其他技术支持。该系统还包括发射场运营活动、支持保证访问的活动、系统集成和测试以及其他相关支持活动。此外,该计划正在努力开发两个或更多满足所有国家安全太空发射要求的国内、商业上可行的航天发射提供商。
•1999年5月17日,州长弗兰克·基廷(Frank Keating)签署了《太空工业发展法》,该法案构成了俄克拉荷马州航天行业发展局(OSIDA)。•1999年5月24日,州长签署了《太空行业税收奖励法》。•多年前的俄克拉荷马州领导人的远见使他们有助于建立美国最早的商业太空港之一,也是第一个在全国范围内将俄克拉荷马州定位为最高的内陆州,以吸引和保留长期高科技工作。•位于40号州际公路以南(66号公路)以南约100英里处,位于俄克拉荷马城以西100英里处,位于克林顿·谢尔曼机场(Clinton-Sherman Airport),这是前空军战略空中司令部(SAC)基地。•俄克拉荷马州航空和太空港是可重复使用的发射车(RLV)发射场,用于商用(和国防)极性轨道,被视为航天飞机的替代着陆点。•2006年6月,FAA的商业太空运输办公室授予Osida授予发射场许可证。•作为全国仅有的12个太空港之一,奥西达(Osida)设计并运营着美国国家空域系统中的航空航天系统的第一个美国内陆太空港口飞行走廊(长150英里,平均宽45英里),避免了军事行动区域或限制领空。•为航空航天和航空航天测试操作提供了OSIDA总部大楼的设计,由航空航天公司设计,并设有一个运营控制中心,其中包括跟踪和监控(T&M)的室内(T&M)室,用于在飞行测试,发射,太空跟踪和恢复期间使用任务控制室。