近年来,通过生物合成方法生产营养化合物。例如,从枯草芽孢杆菌(枯草芽孢杆菌)生物合成的梅纳金酮7(MK-7),一种维生素K2的亚型,被证明比常规化学合成技术更有效地产生。这是由于生物合成阶段中枯草芽孢杆菌作为底盘细胞的发展而有可能的。因此,必须提供有关枯草芽孢杆菌膜渗透性修饰,生物纤维反应器和发酵优化作为与MK-7产生相关的先进技术的见解。尽管传统的同源重组基因编辑方法改善了生物合成途径,但CRISPR-CAS9可能会解决传统基因组编辑技术的缺点。由于这些原因,未来的研究应探讨MK-7合成途径中CRISPRI(CRISPR干扰)和CRISPRA(CRISPR激活)系统基因编辑工具的应用。
带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射
1 问题.... .... .... .... .... .... .... .... .... .... .... .... 1 运输成本高且影响广泛.... .... .... .... .... .... 1 当前运载火箭成本范围.... .... .... .... .... .... .... 1 独特的运输要求.... .... .... .... .... .... .... .... 2 确定每次发射消耗品的成本.... .... .... .... .... 2 确定每次发射航天飞机的成本.... .... .... .... .... 2 代表性运载火箭成本.... .... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 航天飞机. . . . . . . . . . . . . 5 运载火箭成本分数. . . . . . . . . . . . 5 DSP 发射成本分数. . . . . . . . . . . . . 5 GPS 发射成本分数. . . . . . . . . . . . . 6 飞行器性能值. . . . . . . . . . . . . . 6 有效载荷发射效率值 . . . . . . . . . 7 预期效率趋势 . . . . . . . . . . 8 飞行器开发成本和扩展效应 . . . . . 8 有限的发射能力 . . . . . . . . . . . 9 成本目标和成本现实 . . . . . . . . . . . 10 商业发射行业考虑因素 . . . . . . 11 国外竞争 ...... ...... ......
钙钛矿量子点 (QD) 可以通过精确控制其成分和尺寸来化学合成,覆盖整个可见光谱范围,近年来已成为一类具有高量子产率的新型发射体。此外,它们的尺寸相关量子限制可以解释某些多晶钙钛矿薄膜令人惊讶的高发射效率,由于其晶粒结构,这些薄膜可能表现为效率相当低的发射体。5,6 为了加速其发射速率并进一步提高其量子产率(这在处理单光子量子发射体时至关重要),已经实施了不同的方案。7,8 目标是利用谐振器内的场强度增强,从而实现更高的 Purcell 因子。事实上,对钙钛矿进行图案化并将其沉积在其他材料上的能力使得它们可以与各种谐振器相结合:分布式反馈布拉格反射器、9 – 12
标题:基于超材料的单光子发射器 摘要:能够按需工作(即触发时发射)的单光子发射器对于量子信息处理的实际实施至关重要。对于高效的单光子发射器,需要优化包括量子效率和收集效率在内的整体效率。研究了量子点或纳米粒子等 2 级系统的固态等效物以及纳米金刚石、SiC 等材料中的色心作为嵌入不同宿主的偶极子发射器。为了获得更高的量子效率,必须操纵宿主介质中的光子局部态密度以实现最大 Purcell 因子。进一步的设计需要将光子有效地耦合到远场,通常是空气或光纤。在本次演讲中,我将介绍光子晶体微腔中的偶极子发射器以及超材料,以提高它们在特定方向上的整体发射效率。
物质量子比特到行进光子量子比特的转换是众多量子技术(如分布式量子计算)以及多种量子互联网和网络协议的基石。我们制定了一种受激拉曼发射理论,该理论适用于广泛的物理系统,包括量子点、固态缺陷和捕获离子,以及各种参数范围。我们找到了不完美发射器的任意物质量子比特状态的光子脉冲发射效率的上限,并展示了优化保真度的前进道路。基于这些结果,我们提出了一种范式转变,从优化驱动器到直接使用闭式表达式优化飞行量子比特的时间模式。提出了产生时间箱编码和自旋光子纠缠的协议。此外,使用脉冲输入输出理论将主要发射过程吸收到相干动力学中的数学思想,然后采用非厄米薛定谔方程方法,在研究其他物理系统方面具有巨大潜力。
本研究介绍并分析了海洋热能转化(OTEC)技术的三种植物构型。所有解决方案均基于使用OTEC系统通过电解机获得氢。然后压缩并储存氢。在第一个和第二个布局中,分别利用了氨和水和乙醇的混合物的Rankine循环;在第三个布局中,考虑了卡利娜周期。在每种配置中,OTEC循环与聚合物电解质膜(PEM)电解液和压缩和存储系统耦合。太阳能收集器将进入电解酶的水预热至80℃。进行了能量,自我和经济研究,以评估产生,压缩和储存氢的成本。根据冷凝器的温度范围,热和冷资源流量的质量流量比以及质量分数,检查了主要设计约束的参数分析。计算得出的总体发射效率的最大值等于卡利纳循环的93.5%,而0.524€ /kWh是实现氢生产的最低成本。将结果与其他氢生产系统的典型数据进行了比较。
由多个储罐组成的热能存储系统允许实施热跃层控制方法,这可以在放电过程中降低流出温度的下降并增加体积存储密度和利用率。基于提取和混合热阶层控制方法的多坦克系统,使用模拟评估了河流岩石作为储存材料和压缩空气作为热转移流体的模拟。对于绝热条件,模拟显示所有多坦克系统的性能都提高了,并且随着储罐数量的增加,改进的改善。混合方法的性能比提取方法更好。混合方法使用两个储罐的总体积比单坦克系统小的2.15倍提供了5.1%的流出温度下降。在绝热条件下,超过三个坦克无益。使用两个油箱,混合方法的温度下降为5.8%,体积比单坦克系统小的2.5倍。两坦克系统的发射效率为91.3%,而单坦克系统的98.1%。两坦克系统的特定材料成本比单坦克系统的特定材料成本低1.5倍。
摘要伊朗太阳能的高潜力以及空气污染的问题使使用太阳能越来越不可避免。在这项工作中,研究了太阳能有机兰丁周期(ORC)。太阳能收集器是平板收集器。与MOPSO算法的混合体系的能量,自我和经济分析是针对伊朗首都德黑兰进行的。假定太阳能收集器的工作流体被认为是水,ORC的工作流体为R123。MATLAB软件用于仿真,为了计算R123流体属性,使用了重建软件。exergy的调查表明,最充电的破坏与蒸发器有关。考虑了两个由发射效率和电价组成的目标功能。该优化的决策变量被认为是太阳能收集器面板和泵的数量,涡轮机等效率以及冷凝器和蒸发器的压力。帕累托图显示,系统的发电效率在7.5-10.5%的范围内可能有所不同,生产的电力价格可能会在0.2-0.26 $/kWh的范围内变化。关键字:自动,有机兰金周期,平坦收集器,能量,经济,太阳能。
海洋热能转化(OTEC)系统使用温暖的海面水和深冷水之间的温度差来产生电力。由于表面温水与深海冷水之间的温度差异,与化石燃料驱动的发电厂相比,这些系统的热效率很低。在本研究中,提出了一种提高OTEC循环的输出功率,热效率和热量存储的方法,使用了现有的热发电厂的温水出口代替地表水,而地表水通常在基本的OTEC周期中使用。结果表明,考虑到基本OTEC周期中的平均电净功率,能量和充电效率分别为3.34%和17.2%。然后,使用两个阶段的涡轮机研究了建议的OTEC循环,并在能量和充电方面加热。比较两种配置的结果表明,在拟议的周期中,平均输出功率每月增加552 kWh,能量和发射效率分别提高了0.048%和0.31%。作为现有的热循环性能,对实际合并循环发电厂(CCPP)进行了案例研究,以拟议的周期进行建模。结果表明,与基本周期相比,使用CCPP冷凝器的出口水分别提高了17.72 MWH,而能量和易发效率分别提高了1.432%和8.02%。另外,使用冷凝器出口温水,每天平均生产1829吨淡水,并且CCPP的热效率提高了1.87%。