摘要:胶体量子点 (QD) 是有望应用于光子量子信息技术的单光子源。然而,开发具有胶体材料的实用光子量子装置需要对稳定的单个 QD 发射器进行可扩展的确定性放置。在这项工作中,我们描述了一种利用 QD 尺寸的方法,以便将单个 QD 确定性地定位到大型阵列中,同时保持其光稳定性和单光子发射特性。CdSe/CdS 核/壳 QD 被封装在二氧化硅中,以增加其物理尺寸而不干扰其量子限制发射并增强其光稳定性。然后使用模板辅助自组装将这些巨型 QD 精确定位到有序阵列中,单个 QD 的产率为 75%。我们表明,组装前后的 QD 在室温下表现出反聚束行为,并且它们的光学特性在长时间后保持不变。总之,这种通过二氧化硅壳层自下而上的合成方法和强大的模板辅助自组装提供了一种独特的策略,可以使用胶体量子点作为单光子发射器来生产可扩展的量子光子学平台。关键词:单光子源、纳米光子学、量子点、二氧化硅壳层、确定性定位
摘要 — 纳米结构氧化锌 (ZnO) 因其独特的特性和在不同领域应用的可能性在过去几年中引起了人们的广泛关注,包括用作气体传感器件中的活性层和场发射器件的有前途的发射器。虽然它对 FE 目的很有趣,但这种材料的合成可能很复杂且与微电子工艺不兼容。为了解决这个问题,本文探讨了通过非催化剂热氧化法生长 ZnO 纳米线。通过拉曼光谱、X 射线光电子能谱、X 射线衍射和扫描电子显微镜详细表征了原生纳米材料。这些表征证实,所采用的工艺在整个基底表面获得高密度的 ZnO 纳米级结构方面取得了成功。ZnO 纳米线的直径范围为 30 至 100 纳米,长度可达 4 微米。获得了高效的电子场发射特性,开启电场较低(2.4 伏/微米,电流密度为 360 皮安/平方厘米)。基于图像处理的创新系统允许在器件的整个有效区域内进行电流映射,从而提供有关发射电流均匀性的信息。这些结果表明,所采用的低复杂制造程序以及 ZnO 纳米材料本身适用于基于场发射的器件。
摘要:二维 (2D) 卤化物钙钛矿表现出独特的发射特性,使其成为下一代发光器件的潜在候选者。在这里,我们结合非绝热分子动力学和时域密度泛函理论来研究载流子复合过程的基本机制。考虑具有不同有机间隔分子、正丁基铵 (BA) 和苯乙铵 (PEA) 阳离子的单层溴化物钙钛矿,我们发现这些材料中温度引起的结构波动与非辐射载流子复合率之间存在很强的相关性。与 (PEA) 2 PbBr 4 相比,(BA) 2 PbBr 4 的几何形状更灵活,导致电子 - 空穴复合更快,载流子寿命更短,从而降低了较软 2D 钙钛矿的光致发光量子产率。相对刚性 (PEA) 2 PbBr 4 中结构波动的减少不仅表明载流子寿命更长,而且表明发射线宽度更窄,这意味着发射光的纯度更高。我们对 2D 钙钛矿中激发态特性的从头算建模传达了材料设计策略,以微调固态照明应用的钙钛矿发射。
背景。根据目前的脉冲星发射模型,光子是在磁层和电流片内产生的,沿着分界线,位于光柱的内部和外部。无线电发射在极冠附近占优势,而高能对应物在光柱周围的区域可能会增强,无论是磁层还是风。然而,引力对它们的光变曲线和光谱特性的影响研究得很少。目的。我们提出了一种模拟中子星引力场对其发射特性影响的方法,该方法是根据广义相对论描述的缓慢旋转中子星度量中旋转偶极子的解来模拟的。方法。我们以假设背景史瓦西度量为前提,用数值方法计算了光子轨迹,将我们的方法应用于中子星辐射机制,如热点的热辐射和曲率辐射的非热磁层辐射。我们详细描述了广义相对论对远距离观察者观测的影响。结果。天空图是使用广义相对论旋转偶极子的真空电磁场计算的,扩展了之前为 Deutsch 解决方案所做的工作。我们将牛顿结果与广义相对论结果进行了比较。对于磁层发射,我们表明光子轨迹的像差和曲率以及 Shapiro 时间延迟显著影响了无线电和高能光变曲线之间的相位延迟,尽管定义脉冲星发射的特征脉冲轮廓保持不变。
摘要:硝酸盐(GAN)中的缺陷单光子发射器(SPE)近年来由于其提供的优势而引起了人们的关注,包括在室温下操作,狭窄的排放线宽和高亮度。尽管如此,由于可能在GAN中形成的许多潜在缺陷,单光子发射机制的确切性质仍然不确定。在这项工作中,我们对从头算计算进行的系统研究表明,碳和硅作为氮化碳中的常见掺杂剂可以与GAN中的固有缺陷相互作用,并形成新的高速缺陷单光子来源。我们的发现确定了三元缺陷n ga v n c n,其寿命短于1 ns,而小零光子线(ZPL)为864 nm。换句话说,此缺陷可以用作短波长窗口中的高速单光子源进行纤维通信。在尖锐的对比度中,Si支持的缺陷N GA V n Si N具有较高的无占缺陷能水平,该缺陷能水平进入传导带,因此不适合单个光子发射。已经对潜在的缺陷,热稳定性和单光子发射特性进行了系统的研究。分别采用了perdew-burke-ernzerhof交换相关功能和HEYD-SCUSERIA-ERNZERHOF交换相关功能的放松计算和自洽计算。这些发现表明了通过碳或硅掺杂剂的高性能单光子来源的潜力。
尽管BBTD是NIR-II发射荧光团中的一个良好的受体,但仍然需要找到D – A – D化合物的替代电子接受部分。潜在的替代天然是噻硫代二唑(TTD),它是BBTD的一种类型的受体类型,但没有像一个小分子荧光团那样广泛研究,通常降级为有机电子领域。23,24尽管迄今为止其合成的可及性更为有利,但只有一个出版物已使用TTD作为受体部分,从而导致了NIR-II发射的D – A-D荧光团。25荧光菌的NIR-II发射特性是由延长的共轭长度产生的,因此是狭窄的Homo-Lumo间隙。25尽管共轭框架的延伸是将光学特性延伸到NIR-II中的有效方法,但它可以导致分子间相互作用增加,并减少生物成像目的的光物理表现。26先前,我们合并了一系列基于TTD的荧光团,这些荧光团利用芳基胺氨基甲唑作为供体单元,其发射最大为900 nm,发射带延伸到NIR-II。27我们利用电子顺磁共振光谱(EPR)来合理化量子屈服值的差异,并提供了基于TTD的基于TTD的小分子荧光团上的激进物种的证据。尽管拥有出色的受体和捐助者,但这些研究强调了集体,竞争过渡和有效的P-贡献对NIR -II荧光团设计和应用的影响。
16. 摘要 由于效率和亮度的提高,发光二极管 (LED) 现在是户外照明项目的首选。与产生更长波长和黄色至橙色光的高压钠灯和产生近单色黄光的低压钠灯不同,LED 通常是全光谱白光。由于颜色和强度的差异以及闪烁和非朗伯发射等特殊特性,LED 对野生动物的影响与过去的照明模型不同。目前尚无关于 LED 对野生动物影响的重要有组织的信息。该研究综合了 LED 对野生动物的已知或可能影响,为机构提供了一套通用信息,以准确评估环境影响和缓解方法。在不同的数据库中使用特定的搜索词,使用特定的筛选标准收集相关研究。从最终符合条件的来源中提取离散研究。几乎所有研究的生物都是脊索动物或节肢动物。最常见的脊索动物研究是研究发育,其次是研究运动,其中有大量研究与畜牧业有关。大多数节肢动物研究是研究运动,其次是研究发育,其中有大量研究与蚊子有关。光污染研究可用于评估 LED 的影响,但 LED 的特定闪烁和非朗伯发射特性除外。当前的研究支持通过降低强度、控制溢出、减少持续时间和控制光谱来减轻 LED 的影响,以避免大多数群体对较短波长的峰值敏感性。感光器敏感性的显著变化和 LED 光谱输出的灵活性主张考虑特定受影响物种,以努力减轻 LED 的不利影响。
极光现象本质上是动态的:观测到的事件具有丰富的结构,在空间和时间上都很复杂,具有科学上有趣的特征。虽然使用 CCD 或全天相机进行光学极光观测很常见,但极光在无线电频率 (RF) 下也具有有趣的发射特性,特别是在低频和高频波段。极光发射无线电观测器 (AERO) 是一颗 6U 立方体卫星,配备了新型电磁矢量传感器 (VS) 天线。VS 将瞄准 100 kHz - 15 MHz 测量波段内的极光发射,这使得人们能够研究有趣的发射类型,例如极光千米辐射 (20 kHz -750 kHz)、中频爆发 (1.6 MHz - 4.4 MHz) 和回旋加速器发射 (2.8 MHz - 3.0 MHz)。 VS 天线从立方体卫星框架展开后,两端之间的距离为 4 米,并展开形成电偶极子和磁环天线,这些天线的灵敏度足以探测这组不同的科学目标。拥有太空平台(例如 AERO 的矢量传感器天线)可将探测器定位在电离层等离子体频率之上,否则会限制对无线电发射的观测。AERO VS 天线的新测量需要一组背景数据来验证所得数据产品的保真度。AERO 包括一个称为辅助传感器包 (ASP) 的辅助有效载荷,它将使用背景光学和磁数据增强 VS 测量。AERO 背景光学测量的目标是检测多个光谱带中极光发射的存在,即 557 nm 的绿线发射和 630 nm 的红线发射。选择 AMS AG AS7262 6 通道可见光波段光谱光度计作为光学传感器。我们提出了一个辐射测量模型,用于评估 AS7262 传感器测量目标极光事件的能力。我们考虑了许多不同的测试场景,包括不同的参数,例如以瑞利为单位的极光源辐射度、航天器
化合物具有良好的基础,因为它们具有多种优势。它们表现出可调的发射特性;因此,可以针对特定C应用定制发射光的颜色和强度。11 - 13这种可调节性是创建可以补充人类视觉敏感性的磷光器的关键特征,从而带来最佳的照明和显示质量。ca 3(vo 4)2(一种钒酸盐)具有一种结构结构,当用某些稀土离子掺杂时,可以定制以在可见光谱中发出光。14此功能使CA 3(VO 4)2成为需要绿色排放的引人注目的选择,例如在W-LED和显示技术中。15基于Ca 3(vo 4)2的磷光体的可调节性能源于其可调节的特性,从而能够以受控和有效的方式产生材料。发射白光二极管(LED)的发展在很大程度上取决于绿色发射磷。在发光活化剂中,TB 3+离子以其出色的量子产率,辐射纯度和稳定性而闻名。16,17用于研究绿色发光,最近将TB 3+离子添加到宿主材料中,例如BioCl和Sral 2 O 4。 18,19 4f 8 - 4f 7 5d 1转换负责TB 3+离子在(220-300)NM区域中显示的广泛激发属性。 令人惊讶的是,在此激发范围内还吸收了孤立的VO 4 3-部分,可能用作TB 3+离子敏化剂。 kuz'Icheva等。 在TM掺杂的Ca 3(vo 4)2中证明了光谱发光特性。 20 Voronina等。16,17用于研究绿色发光,最近将TB 3+离子添加到宿主材料中,例如BioCl和Sral 2 O 4。18,19 4f 8 - 4f 7 5d 1转换负责TB 3+离子在(220-300)NM区域中显示的广泛激发属性。令人惊讶的是,在此激发范围内还吸收了孤立的VO 4 3-部分,可能用作TB 3+离子敏化剂。kuz'Icheva等。在TM掺杂的Ca 3(vo 4)2中证明了光谱发光特性。20 Voronina等。描述Mn掺杂的Ca 3(vo 4)2,21
上下文。Atacama大毫米/亚毫米阵列(ALMA)透露,原始盘的毫米灰尘结构极为多样,从小而紧凑的灰尘盘到具有多个环和间隙的大型灰尘盘。已经提出,内部圆盘中H 2 O发射的强度特别取决于外盘中的冰卵石的涌入,这一过程将与外尘盘半径相关,并且可以通过压力凸起来预防。此外,灰尘结构还应影响内盘中其他气体物种的发射。由于陆地行星可能在内部圆盘区域形成,因此了解其组成是感兴趣的。目标。这项工作旨在评估压降对内盘分子储层的影响。存在尘埃间隙,并可能在圆盘上较远的巨型行星形成,可能会影响内盘的组成,从而影响陆地行星的构建块。方法。使用詹姆斯·韦伯(James Webb)空间望远镜(JWST)上中红外仪器(MIRI)中型仪器(MIRI)中型培养物(MRI)的敏感性和光谱分辨率与Spitzer相比,我们比较了H2 O,H2 O,HCN,C 2 H 2的观察性发射特性,并与Alma观察的二张外粉丝观察,并确认二张外的盘中,并在ALMA观察中进行杂物,并在ALMA观察中涂鸦,并在Alma观察中涂鸦,并在Alma观察中,在Alma观察中,中间涂抹量宽度有数十个天文单位的椎间盘,周围有m⋆≥0的恒星。45m⊙。 结果。 我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。45m⊙。结果。我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。我们使用了新的可见性平面拟合ALMA数据来确定外尘盘半径并识别盘中的子结构。此外,相对缺乏较冷的H 2 O-发射似乎与含碳物种的发射升高有关。,大多数显示碳种类可检测到的发射。盘子和极宽的圆盘似乎作为一个有点独立的群体,具有更强的冷H 2 O发射和弱温暖的H 2 O发射。结论。我们得出的结论是,即使对于具有非常宽的间隙或空腔的盘子,完全阻塞径向尘埃似乎很难实现,这仍然可以显示出明显的冷H 2 O发射。但是,椎间盘之间似乎确实存在二分法,这些椎间盘表现出强烈的冷H 2 O和显示出HCN和C 2 H 2的强烈发射的二分法。对外灰尘盘结构和内盘组成的影响的更好限制需要有关子结构形成时间尺度和圆盘年龄的更多信息,以及将(CO和CO 2)等(Hyper)挥发物(如CO和CO 2)捕获的重要性,例如H 2 O(例如H 2 O),以及CO的化学转化,将CO转化为挥发性较小的物种。