我们已经研究了通过重复热预处理和负电子亲和力(NEA)激活周期制备的GAAS表面的光发射特性。表明,光发射效率随预处理序列发生了巨大变化。我们已经用两个具有不同量子效率的GAAS样品讨论了光发射特性,并发现量子效率随预处理序列的变化与量子效率的绝对值无关。此结果表明电子的发电和传递和发射是独立的过程。我们还讨论了新型的NEA激活方法,该方法有望改善光发射特性。I.引言碱金属在半导体表面上的吸附是从科学和实践的角度来看的重要系统,并且多年来已经对许多人进行了研究。例如,当电子亲和力的GaAS半导体大约为4 eV,因为大量条件会通过CS的交替供应和O 2(或NF 3)的交替激活,其表面的真空水平位于大量导带以下,并且该条件定义为负电子亲和力(NEA)。当光子能量在GAAS带隙能(E G = 1.4 eV)附近的激发灯照亮表面时,Valence Electron会激发到最小的传导带,并可以轻松逃脱到真空中。NEA-GAA具有很大的优势,例如自旋极化,低发射率,短束和高量子效率(QE)电子束,并且NEA-GAAS表面已被用作1970年代1的加速器的光(1)。碱金属在GAAS表面上的吸附已被广泛应用于各种场,但尚未详细阐明其吸附结构和光发射机制。将光发射过程的定性或现象学解释提出为Spicer的三个步骤模型2),并且吸附结构由多种模型(例如Hetero Junction,cluster或偶极模型3,4)预测。很难用碱金属和氧原子的几个单层观察到实际的NEA结构,因为在真空中,热环境和残留气体很容易降解NEA-GAAS表面。这些结构变化降低了NEA-GAAS光电的性能。最后,我们将简要提出新型的NEA激活方法。有可能改善光发性属性。
1-ID X 射线光束线利用先进光子源 (APS) 储存环电子束的高能量 (7 GeV)、其低发射率、短周期波荡器源和针对高能 X 射线优化的光学系统,提供 40-140 keV 光子能量范围内的高亮度光束,用于材料散射研究。这种 X 射线与物质相互作用的特点是衰减低、散射角小、相互空间访问大,使其非常适合用作体探测器以及几何限制或极端样品环境。光束线范围的很大一部分涉及以高空间分辨率研究工程材料的微观结构和演变,例如获得多晶材料的三维晶粒图,给出位置、形状、晶体取向和应变状态,并通常跟踪在施加的刺激下发生微观机械变化的数千个晶粒的这些参数。高空间分辨率研究通常通过结合多种互补技术进行,即在同一样本上使用聚焦和非聚焦光束。聚焦光束技术包括近场高能衍射显微镜 (nf-HEDM;Suter 等人,2006 年)、衍射断层扫描 (Birkbak 等人,2017 年) 和相干衍射成像 (CDI)。非聚焦光束用于传统断层扫描和远场高能衍射显微镜 (ff-HEDM;Lienert 等人,2011 年)。实现这样一套技术使得同轴聚焦光学系统变得可取,从而使线 (1D) 聚焦、点 (2D) 聚焦和非聚焦配置的光束位置保持不变。主要出于这个原因,不使用 Kirkpatrick–Baez 反射光学器件,尽管它们是消色差的,因此很容易适应能量可调性(如果基于全外部反射,而不是多层)。此外,与同轴光学器件不同,小焦点位置容易受到反射光学器件的角度稳定性的影响。基于菲涅尔区的光学器件(例如区域板和多层劳厄透镜)以同轴方式运行,但具有其他衍射级晕,其消除
摘要。最近已经开发了许多基于新颖的玻璃设计,低发射率薄片涂层以及专有荧光中间层类型的现代玻璃和窗户产品。当今的高级窗户可以控制诸如热发射,热量增益,颜色和透明度之类的属性。在新型的玻璃产品中,还通过图案化的半导体薄膜能量转换表面或使用发光浓度型方法来实现较高的透明度。通常,对于建筑行业和农业的应用(温室)应用,半透明的和高度透明的PV窗口是专门设计的,包括特殊类型的发光材料,衍射微结构,定制的玻璃系统和电路。最近,在构建集成的高透明太阳能窗口中已经证明了显着的进步(具有高达70%的可见光传输,电力输出p max 〜30 33 w p /m 2,例如< /div>,ClearVue PV太阳能窗);这些预计将在温室装置中为智能城市和先进的Agrivoltaics的发展增加动力。目前(2023年),这些ClearVue窗口设计是唯一可以在建筑物中提供明显的能源节省的视觉清晰和部署的建筑材料,同时又具有大量可再生能源的能源。这项研究的目的是将ClearVue®PV窗口系统的最新工业化开发置于发光浓缩器领域中先前研究的更广泛的背景,并提供一些有关在研究温室建筑物包裹中部署的几种Clearvue窗口设计类型的测量性能特征的细节,以阐明其能量差异,并在其相应的差异中进行了差异。提供了这些最近开发的透明Agrivoltaic建筑材料的实际应用潜力的评估,重点关注可再生能源产生数字以及在一项长期研究中观察到的季节性趋势。本文报道了2021年初在默多克大学(澳大利亚珀斯)建造的基于研究温室的Agrivoltaic装置的测量绩效特征。默多克大学的太阳能温室已经证明了由于其建筑物的现场能源生产而产生的明显节省的商业粮食生产潜力。
学术出版物(选定)Zeng,s。; Yang,Z。; Hou,Z。;帕克,c。琼斯(M。)丁,h。 Shen,K。;史密斯,A。;王,b。江,h。 Sun,L。具有光学/光热和形态多功能性的超薄金属纳米涂料启用的动态多功能设备。PNAS 2022,119(4),E2118991119。Zeng,S。张,d。;华盛顿州的黄; Wang,Z。;弗雷雷(S。); Yu,X。;史密斯,A。; Huang,E。; Nguon,H。; Sun,L。生物启发的敏感和可逆的机械色素通过应变依赖性裂纹和褶皱。自然通讯2016,7:11802。doi:10.1038/ncomms11802。Zeng,S。 Li,R。;弗雷雷(S。); Garbellotto,V。; Huang,E。;史密斯,A。;胡,c。 Tait,W。; Bian,Z。; Zheng,G。;张,d。; Sun,L。具有可调动力学的水分反应性皱纹表面。高级材料2017,29,1700828。Zeng,s。;史密斯,A。; Shen,K。; Sun,L。具有多尺度架构和动态表面地形的智能软材料。材料研究的解释,2022,3,11,1115–1126 Zeng,S。#; Shen,K。#;刘y。 chooi,a。;史密斯,A。; Zhai,s。; Chen,Z。; Sun,L。通过机械可调的表面发射率的动态热辐射调节器。今天的材料2021,45,44-53 Zeng,S。; Li,R。; Tait,W。;张,M。;朱,M。 Chov,n。; Xu,G。;张,d。; Sun,L。皱纹驱动的管状结构的自发形成,作为适应性3D可拉伸电子产品的多功能平台。材料视野2020,7,2368-2377。材料视野2020,7,164-172。Zeng,S。太阳,h。帕克,c。张,M。;朱,M。 Chov,n。;说谎。;史密斯,A。; Xu,G。; Li,s。; Hou,Z。; Li,Y。;王,b。张,d。; Sun,L。多刺激性响应性铬化,具有可量身定制的机械色素灵敏度,可在环境条件下进行多功能互动感。
引言 本白皮书旨在描述为确保太空访问 (AATS) Nebula 项目实施零信任架构 (ZTA) 的零信任策略和实用方法。Nebula 立即实施国防部的零信任能力执行路线图,该路线图比高级能力的要求和时间表提前 8 年。本白皮书为 USSF 和 DAF 社区服务,展示强大的基础 ZTA 实施路径,反思经验教训,并鼓励社区之间进一步对话。位于加利福尼亚州范登堡和佛罗里达州卡纳维拉尔角的美国太空军 (USSF) 太空港对支持发射和试验场任务的基础设施成本的直接和间接费用收取费用有独特的政策。SpaceX、联合发射联盟 (ULA)、Relativity、Blue Origin 等商业发射提供商要求所有国防部、情报界和商业任务的直接云成本具有透明度、准确性和可重复性。这种独特的财务要求导致建立了一个专用的云账户结构,即 Nebula,它为发射率的指数增长(即每年 365 次以上的发射)提供了任务级粒度。由于需要一个专注于商业发射客户最终用户的新架构,因此有机会从头开始设计一个基于云的 ZTA 解决方案。Dark Wolf Solutions, LLC 从他们在国防部、情报部门和行业中的经验中汲取了教训。由于 Dark Wolf 作为可信渗透测试人员在 PlatformOne (P1) 平台上拥有丰富的经验,因此 Nebula 架构以 P1 架构和解决方案为参考,但不受其约束。零信任是一个旅程,所有计划都会在财政约束下随着时间的推移不断改进其实施。本白皮书说明了 Dark Wolf 在某些产品上做出的设计决策,如何将这些产品链接在一起以形成符合国防部 CNAP 参考设计 (RD) 的云原生接入点 (CNAP),以及如何将功能从 CNAP 扩展到 Nebula;保护资源免受未经授权的访问,同时确保在正确的时间、正确的地点和正确的人身上授予对这些数据和资源的访问权限。Nebula 技术团队和政府领导层做出了深思熟虑的决定,采用广泛采用的标准和商业用户来追求安全(即 P-ATOd 1 )托管服务,因为利用 Nebula 提供服务的租户包括大量商业客户。Nebula 团队的策略是专注于标准并创建模块化
如今,太空环境正在经历一场彻底的变革,影响到技术、太空使用、任务概念和操作。电力推进一旦被证明其可靠性和能力,在过去十年中已开始用于商业和科学卫星,无论是低地球轨道 (LEO) 还是地球静止轨道 (GEO),而且其使用量预计还会增长。20 世纪 90 年代末的技术改进导致空间部件小型化,最终使卫星尺寸得以缩小。自 2003 年第一颗立方体卫星发射以来,大学或商业用途对此类小型卫星的使用不断增加,对未来太空环境演变的分析表明,这种增长将在未来十年保持下去。随着小型卫星数量的增加,预计每年的发射率也会更高,新的国家和私人参与者也会加入进来。在这些新参与者中,由于其对轨道环境的影响,可能最相关的将是集群和星座任务。巨型卫星群与小型卫星群一起,将代表未来十年低地球轨道系统最深刻的变化。多个巨型卫星群已在规划中,每个卫星群由数千颗卫星组成,其中一些已开始部署阶段。预计未来几年,在轨卫星数量将增加数倍。考虑到目前的数量略低于 2,000 颗,这一数字将同时增加到数万颗在轨运行的卫星(Hugh 等人,2017 年)。除此之外,地球轨道上最常见的元素是空间碎片物体。空间碎片是指除运行卫星之外的所有人造太空物体以及被地球引力捕获的微流星体。它包括上级火箭体、仍在轨道上的非运行卫星、任务遗留物体以及因碎裂或碰撞而产生的旧卫星碎片。自 1958 年航天时代开始以来,空间垃圾物体的数量不断增长,目前轨道上大于 10 厘米的物体有 34,000 多个,1 厘米至 10 厘米之间的物体有 900,000 多个,更小的物体有数百万个(ESA 报告 2019)。预计这些数字在未来几年还会增加,这不仅与太空交通的增加有关,也与当前跟踪技术的改进有关。新的基础设施预计将在未来十年开始运行,以探测迄今为止无法跟踪的较小物体。虽然编目物体的增加并不意味着实际物体数量的增加,因为它们已经在轨道上,但这将增加卫星运营商遇到的会合警报数量(Haimerl 和 Fonder 2015)。
举办了 15 次短期培训访问,并进行了 42 次流动。开发了总结联盟提供的 RI 和服务的最新情况的数据库,确定了可能缺少的基础设施/服务,以实现最新 CST 实施计划的目标,并与利益相关者进行了讨论。最终确定了协调融资机会的概念说明,并举办了研讨会。EU-SOLARIS 成为 ERIC。与其他 CST 相关的欧盟项目和国际倡议开展合作。准备了实施 TA 活动的文件。发起了 5 次电话会议;完成了 4 次访问活动。4 次关于 TA 的网络研讨会。制定了熔盐 (MS) 对结构材料的动态腐蚀协议,研究了材料作为潜热或显热能储存介质的可行性的方法,并制定了原型测试指南。确定了 MS 回路的关键组件,并审查了当前程序。举办了关于 CSP MS 工厂组件特性的传播研讨会。制定了报告 DWT 系统行为的协议和指南,对适当的测试程序进行了通用定义,以评估 DWT 中要实施的新组件和材料的性能,改进了模拟软件并验证了其中使用的相关性。实施了新的实验装置。完成了开发用于热力学、动力学和循环稳定性测试的标准化材料测试的工作。对太阳能燃料 (SF) 生产工艺领域的 200 多种出版物进行了文献综述,并用于制定 SF 生产反应堆的品质因数。改进了用于评估 CSP 接收器热机械性能的测试台并进行了首次太阳能测试。组装了相机原型,基于一种改进 CSP 太阳能接收器温度测量的新方法。进行了 RRT 发射率测量。使用红外摄像机进行了参数识别以确定线性集热器管的温度。改进了加速老化装置。制定了脏污镜测量指南,分析了脏污散射行为,并提供了基于模型的分析传递函数。在测试台和太阳能集热器上生成了更多 REPA 负载数据,包括传感器数据分析。开发了新的抛物面槽 (PT) 接收器热损失测量程序。验证了混合预测模型,开发了预测模型。研究了使用天空成像仪数据对 PT 性能参数确定准确性的影响。发表了菲涅尔 RI 对 DNI 变化的稳健性。LFR
参考文献1。P.Müller-Buschbaum:放牧的小角度X射线散射 - 一种用于研究纳米结构聚合物膜的先进散射技术;肛门bioanal.chem。376,3(2003)2。P.Müller-Buschbaum:放牧发病率小角度散射:挑战和可能性;聚合物杂志(邀请评论)45,34-42(2013)3。P.Müller-Buschbaum:使用放牧的发射率小角度散射在薄膜几何形状中的结构测定;在“聚合物表面和接口:表征,修改和应用程序”中,EDT。M. Stamm,第17-46页,柏林施普林格,ISBN-13:978-3-540-73864-0(2008)4。 P.Müller-Buschbaum,V.Körstgens:扫描探针显微镜和放牧的小角度散射,作为研究聚合物膜和表面的互补工具;在“纳米科学扫描探针显微镜和纳米技术2”的纳米科学和技术特刊中,EDT。 Bhushan,b。 P.101-129 Springer Berlin,ISBN-13:978-3-642-10496-1(2011)5。 P.Müller-Buschbaum:放牧发病率的基本介绍小角度X射线散射;在《物理学特刊》中,关于“同步子光在材料和生命科学中非晶体衍射的应用”的物理学中。 776,EDT。 Ezquerra,T.A。 ; Garcia-Gutierrez,M。; Nogales,a。;戈麦斯(M。) P.61-90柏林施普林格,ISBN-13:978-3-540-95967-0(2009)。 电子邮件通讯作者:muellerb@ph.tum.deM. Stamm,第17-46页,柏林施普林格,ISBN-13:978-3-540-73864-0(2008)4。P.Müller-Buschbaum,V.Körstgens:扫描探针显微镜和放牧的小角度散射,作为研究聚合物膜和表面的互补工具;在“纳米科学扫描探针显微镜和纳米技术2”的纳米科学和技术特刊中,EDT。Bhushan,b。 P.101-129 Springer Berlin,ISBN-13:978-3-642-10496-1(2011)5。 P.Müller-Buschbaum:放牧发病率的基本介绍小角度X射线散射;在《物理学特刊》中,关于“同步子光在材料和生命科学中非晶体衍射的应用”的物理学中。 776,EDT。 Ezquerra,T.A。 ; Garcia-Gutierrez,M。; Nogales,a。;戈麦斯(M。) P.61-90柏林施普林格,ISBN-13:978-3-540-95967-0(2009)。 电子邮件通讯作者:muellerb@ph.tum.deBhushan,b。 P.101-129 Springer Berlin,ISBN-13:978-3-642-10496-1(2011)5。P.Müller-Buschbaum:放牧发病率的基本介绍小角度X射线散射;在《物理学特刊》中,关于“同步子光在材料和生命科学中非晶体衍射的应用”的物理学中。776,EDT。 Ezquerra,T.A。 ; Garcia-Gutierrez,M。; Nogales,a。;戈麦斯(M。) P.61-90柏林施普林格,ISBN-13:978-3-540-95967-0(2009)。 电子邮件通讯作者:muellerb@ph.tum.de776,EDT。Ezquerra,T.A。 ; Garcia-Gutierrez,M。; Nogales,a。;戈麦斯(M。) P.61-90柏林施普林格,ISBN-13:978-3-540-95967-0(2009)。 电子邮件通讯作者:muellerb@ph.tum.deEzquerra,T.A。; Garcia-Gutierrez,M。; Nogales,a。;戈麦斯(M。) P.61-90柏林施普林格,ISBN-13:978-3-540-95967-0(2009)。电子邮件通讯作者:muellerb@ph.tum.de
遥感的单元I基本原理:遥感的定义:遥感原理,遥感历史。电磁辐射,辐射定律,EM光谱。EMR的相互作用:与大气,大气窗,成像光谱法,与地球相互作用。各种土地覆盖特征的光谱标志。单元-II平台:平台类型。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。 传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。 单元III数据接收,处理和图像解释。 地面站,数据生成,数据处理和更正。 错误和校正:辐射,几何和大气。 地面调查以支持遥感。 培训集,准确性评估,测试站点。 地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。 视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。 导热率。 IR图像的特征。 教科书:1。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。单元III数据接收,处理和图像解释。地面站,数据生成,数据处理和更正。错误和校正:辐射,几何和大气。地面调查以支持遥感。培训集,准确性评估,测试站点。地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。导热率。IR图像的特征。 教科书:1。IR图像的特征。教科书:1。立体镜:立体镜-Parallax方程 - 视差测量 - 高度的视差杆测量和斜率 - 立体绘图工具的测定。分析和数字摄影测量法:空中照片的方向间接,相对和绝对方向的概念,带状三角剖分,独立模型的阻滞调节(BAIM),特殊情况(切除,交叉点和立体声配件),空中式 - 空中三角形,三角构造,块调节,块调节,矫形器,矫形器,摩擦。单元V热成像:简介 - 动力学和辐射温度,材料的热性能,发射率,辐射温度。热容量,热惯性,明显的热惯性,热扩散性。IR - 辐射仪。天气对图像的影响。i)云,ii)表面风,iii)烟羽的穿透。热图像的解释。微波遥感和激光雷达:简介 - 电磁频谱,机载和空间传播雷达系统基础仪器。系统参数 - 波长,极化,分辨率,雷达几何形状。目标参数 - 背部散射,点目标,体积散射,穿透,反射,bragg共振,跨侧面变化。斑点,辐射校准。微波传感器和图像特征,微波图像解释。LIDAR简介。高光谱遥感。Floyd,F。Sabins,Jr:遥感原理和解释,Waveland Pr Inc,2020 2。Lillesand and Kiefer:遥感和图像解释,John Wiley,2015年。3。4。遥感卷的手册。i&ii,第2版,美国摄影测量学会。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。 现代摄影测量简介。 印度:威利。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。现代摄影测量简介。印度:威利。
黑体是一个理想化的物体,它吸收所有传入的辐射并反射或传输,同时也是所有波长辐射的完美散热器。这种现象被称为黑体辐射,其特征是热能光谱,该热能光谱显示了在一系列波长或频率上的辐射强度。可以使用量子理论控制的几种原理来描述黑体辐射的定律。需要特殊的望远镜才能观察肉眼不可见的恒星发射辐射。上次审查于2023年1月14日。“黑体”重定向。注意:这与黑体不同(电影)不同。波兰实验室中的黑体散热器近似于普朗克定律描述的理想模型,并作为光谱辐照度的标准。随着黑体的冷却,其辐射强度降低,峰值波长向更长的波长移动。为了进行比较,经典的雷利 - 简 - 与其紫外线灾难一起显示。黑体或黑体是一个理想化的物体,可吸收所有电磁辐射,而不论入射率频率或角度如何。在热平衡处发出的黑体发射的辐射称为黑体辐射。它的名称来自它吸收所有颜色的光。相比之下,白色身体在各个方向均匀地反映了射线。在恒温下的黑体根据普朗克定律发出电磁辐射,其光谱仅由温度决定(见图),不受形状或组成影响。理想的黑体具有两个关键特性:1)它是一个理想的发射极,2)它垂直于发射方向,无论方向如何,它都会辐射各向同性的能量。真实材料会散发出黑色能量水平的分数 - 发射率。按照定义,热平衡中的黑体具有发射率ε= 1。发散性较低的身体称为灰色身体。以高发射率建造黑体仍然是一个令人感兴趣的话题。在天文学,恒星和行星辐射中有时会使用有效温度来表征,该温度代表了发射相同总电磁能通量的黑体温度。艾萨克·牛顿(Isaac Newton)在他的1704年书中介绍了黑色身体的概念,询问黑体是否比其他颜色更容易从光中吸收热量,因为进入它们的光不会反映出,而是被反射的,有时会吸收,有时会散布在内部,直到它消散。古斯塔夫·基尔乔夫(Gustav Kirchhoff)在1860年首先提出了一个黑体的想法:“可以想象到身体完全吸收了所有事件射线,既不反映也没有传播。”黑体被定义为从所有波长和角度的辐射吸收器。理想化的表示,称为黑体,允许所有入射辐射无反射地进入它,并在内部吸收所有辐射。[10]此定义下降了“无限小厚度”的引用。[9]一个用于模拟黑色表面的广泛使用的模型是一个隔离的围墙中的一个小孔,墙壁上有不透明对辐射的壁。但是黑体辐射到底是什么?入射辐射通过孔进入,如果外壳足够大,则几乎没有机会再排放。但是,当入射辐射波长超过孔的直径时,由于反射,该模型并不完美。[10]有限大小的腔体内的辐射不会遵循理想的planck频谱,而波长与腔的大小相当或大。[11]围栏中的一个小孔可以逃脱一些辐射,近似黑体辐射,该辐射表现出温度t的能量分布特征,并且与小于孔的大小的波长无关。[11]热力学的第二定律指出,如果不受干扰,腔内的辐射最终将达到热平衡,[12],尽管此过程可能需要很长时间。[13]通常,通过腔或壁中的材料对辐射的持续吸收和辐射发射达到平衡。这种机制“热化”传入辐射,将能量重新分布直至光子达到普朗克分布。与稀释的气体(如稀释气体)相比,凝结物质的存在速度显着加快了热量化的速度。与与物质的相互作用相比,低于数十亿的开尔文,直接光子 - 光子相互作用通常微不足道。[19]可以将光子视为一种相互作用的玻色子气,[20]在H Theorem下描述,任何相互作用的玻色子气体都将在一般条件下达到热平衡。通过热辐射的身体行为通过其传播(τ),吸收(α)和反射(ρ)来描述。身体及其周围环境之间的界面可能是粗糙的或光滑的。对于非反射界面,将区域与不同的折射率分开,反射和折射定律必须是粗糙的。理想化的不透明体不会传输辐射,但可能反映出某些辐射,而透明的身体会传递所有入射辐射。对于所有波长,灰色体具有常数α,ρ和τ。白色身体在各个方向均匀地反映了所有入射辐射。黑体的特征是τ= 0,α= 1,ρ= 0。普朗克的模型描述了完美的黑色身体,但由于表面缺陷而指出了它们在自然界的不存在。基尔乔夫(Kirchhoff)介绍了一个完美的黑体,具有完全吸收的表面层,但普朗克(Planck)指出了对这一想法的严重限制。黑体的实现包括1898年的Otto Lummer和Ferdinand Kurlbaum的腔辐射源,该辐射源已用于迄今为止用于辐射测量。类似黑体的材料是为了伪装和雷达吸附剂应用以及太阳能用途而寻求的。黑体材料是大多数波长的光吸收器,使它们有效地发射红外辐射。这些特性使其非常适合在空间或真空等极端环境中加热应用。此外,它们是有效的抗反射表面,可减少望远镜和相机中的流浪光,从而更准确地观察。具有高折射率的纳米孔材料也表现出较低的反射率,有些人的平均反射率为0.045%。研究人员一直在探索对传统灯泡涂料(例如碳纳米管)进行改进的新材料,这些材料可以实现近乎完美的黑体行为。创建诸如Nanoblack和Super Black之类的材料的创建已经突破了吸收率的边界,某些材料吸收了多达99.9%的传入光。恒星的有效温度取决于理想的黑体的温度,该温度辐射与恒星相同的能量。可以使用不同的颜色指数(例如B-V和U-B)来计算此值,这些颜色指数提供了有关恒星表面通量的信息。通过分析这些指数,天文学家可以估算恒星的有效温度,并将其与完美的黑体温度进行比较。对主要序列和超级恒星的研究揭示了它们的颜色与有效温度之间存在粗糙的相关性。这些恒星群的曲线位于相应的黑体U-B指数下方,表明它们比具有相同颜色指数的理想黑体发出的紫外线少。有趣的是,太阳的有效温度低于其光球温度,该温度随着深度而变化。还使用颜色颜色图中的B-V和U-B颜色指数计算了黑洞的有效温度。物理学家认为,黑洞的温度非零,辐射具有几乎完美的黑体光谱,最终通过真空波动蒸发。大爆炸理论的基础是宇宙学原理,表明在大范围内,宇宙是同质和各向同性的。最初,在编队后大约一秒钟,它是一个在10^10 K以上的温度下的黑色身体。随着它的扩展,物质和辐射冷却,导致当今的宇宙微波背景辐射,在2.7 k左右,它几乎是理想的planck频谱。这种辐射源于Anisotroproproy的真正黑体的完善,这一辐射由Anisotropropy变体的一部分,一部分大约100,000。Stefan-Boltzmann定律将黑体辐射的总能量为σT^4,其中σ是Stefan-Boltzmann常数(5.67×10^-8 W/M^2/K^4)。一种简化的冷却方法涉及补充该法律的发射ε≤1,并考虑辐射,热容量和温度随时间变化的功率变化。但是,这些假设忽略了细节,例如热重新分布机制,变化的组成,相变和温度变化的发射率。这种简化可以通过将总发射功率与发射表面积联系起来来估计对象尺寸,该功率用于确定X射线突发源自中子星而不是黑洞。热辐射定律与物体如何在各种波长中发出或吸收光线有关。通过引入少量物质可以吸收并散发所有光频率,可以加速腔中辐射的热平衡。这是基于包括普朗克,劳登和曼德尔和狼在内的各种物理学家的工作。实现热力学平衡的关键在于光子之间的相互作用,当仅存在光子时,这可以忽略不计。需要少量物质来促进此过程。当光子彼此相互作用或与物质相互作用时,除非分子的分布达到平衡,否则随着时间的推移会导致热能降低。为了表征这种情况,可以定义称为“ H”的合适数量。这个概念对于理解气体如何随着碰撞而进行的行为和变化至关重要。此外,某些材料在吸收或反射光(包括极端黑暗)方面具有出色的特性。示例包括垂直排列的单壁碳纳米管和低密度纳米管阵列制造的极深的材料。这些概念对于理解量子水平的辐射和物质的行为至关重要,尤其是在热力学和统计力学中。在包括物理,天文学和材料科学在内的各个领域进行了广泛的研究,黑体光谱及其性质的概念已得到广泛的研究。由理查德·布朗(Richard Brown)及其同事在英国国家物理实验室创建的“有史以来最黑的黑色”材料就是这种现象的一个例子。对黑人光谱的研究可以追溯到古代,诸如亚里士多德(Lawrence Hugh Aller,1991年)等哲学家的观察以及后来的天文学家(如David F Gray)(1995年2月)。在天体物理学和恒星天文学的背景下,还探索了与材料相互作用的光子的研究(Kenneth R. Lang,2006; B. Bertotti等,2003)。黑体光谱的形成受源中温度曲线(例如太阳或恒星)的影响(Simon F. Green等,2004; David H. Kelley等,2011)。此外,近年来已经对热力学及其在黑洞中的应用进行了广泛研究(Robert M Wald,2005年)。最近的研究还探索了碳纳米管的特性,可用于创建接近完美的黑色表面(Ghai等,2019)。这些材料的开发对包括能源,电子和航空航天在内的各个领域具有重要意义。总体而言,对黑体光谱及其特性的研究继续促进我们对物理世界及其许多奥秘的理解。目前尚无实验或观察证据来支持黑洞热力学的理论。研究人员提出了各种例子,包括通过中微子的发射和辐射冷却中子恒星,但是这些想法尚未经过经验测试。中子恒星中的冷却过程受热容量和中微子发射之间的平衡的控制,其生命的前105 - 6年。后来,夸克物质核心变得惰性,由于核物质分数的中微子排放,恒星进一步冷却。请注意,此解释版本着重于原始文本中介绍的主要思想和概念,而不是提供有关提到的每个点的详细摘要。**基希霍夫的辐射法及其历史**在柏林,在公元783 - 787年之间,古斯塔夫·基希霍夫(Gustav Kirchhoff)就身体发射和吸收辐射的能力之间的关系做出了重大发现。这个概念后来被称为基尔霍夫的辐射法。**早期实验**基希霍夫(Kirchhoff)的论文之一,“关于光和热的不同物体的辐射和吸收力量之间的关系”,在1860年由弗朗西斯·古斯里(Francis Guthrie)从德语转换为英语。在本文中,基尔乔夫解释说,完美的辐射吸收器也是完美的发射极。**黑体理论的发展**在接下来的几十年中,其他研究人员建立在基希霍夫(Kirchhoff)的作品上,包括路德维希·鲍尔茨曼(Ludwig Boltzmann)和马克斯·普朗克(Max Planck)。他们开发了“黑体”的概念,它是一个理想化的物体,它吸收了所有传入的辐射而无需反映任何传入的辐射。**热力学和天体物理学的进步**在20世纪,科学家继续完善他们对黑体理论的理解。阿尔伯特·爱因斯坦(Albert Einstein)对量子力学的发现,使人们对辐射及其与物质的相互作用有了更深入的了解。**现代发展**如今,研究人员正在努力开发可以模拟完美辐射吸收器的特性的新材料。这些材料在天体物理和光学等领域中有应用。注意:我保留了原始文本的结构和音调,但对其进行了改写,以使其更可读和简洁。一项开创性的实验导致发现了量子力学中的新领域,该领域深入研究了辐射下物质的行为。从定义上讲,没有材料是完美的“黑体”,但是有些像碳相似的东西已经接近。在本文中了解其复杂性,示例和特征。这种现象更多地是关于系统的特征,而不是对其进行震撼的实际辐射。黑体辐射:本质上是一种理论概念,一种完全吸收所有入射辐射的系统或物质,而无需重新传播任何一个辐射,都可以视为完美的黑体。根据热力学定律,这种系统必须发出与吸收的光一样,尽管在不同的温度和能量水平下。完美的黑色身体:理想的场景真正的黑色身体将完全黑色的身体看起来完全黑色,因为它能够吸收所有入射热辐射,而不论波长如何,而没有任何传输。但是,这种情况仍然纯粹是理论上的,因为没有任何材料能够真正体现这些特征。黑体辐射的例子和材料虽然没有完美满足黑体标准的材料,但是像石墨这样的物质在光吸收方面非常有效 - 达到96%。太阳也很近,发出了大量的阳光,但效率约为70%。其他示例包括加热物体,例如烤面包机元素和灯泡细丝。理解黑体辐射可视化吸收并以同样概率排放所有辐射的系统是具有挑战性的。但是,物理学家通常认为黑体是热平衡中理想化的空心金属盒 - 配有一个用于辐射逃生的小孔。这个思想实验有助于说明黑体辐射的概念。黑体辐射光谱:连续现象。任何加热物体发出的光谱落在黑体辐射的伞下。值得注意的是,这种现象表现出连续的特性,该特性受物体温度而不是其固有特征的控制。本质上,黑体根据温度在各种波长中排放热辐射。电子过渡和黑体辐射根据量子力学,电子从较高能量状态到较低的态度导致光的发射 - 导致黑体辐射的连续光谱。这种现象为排放提供了宝贵的见解,并在加热,照明,热成像等方面具有实际应用。黑体辐射特征:关键定律,黑体辐射的行为可以通过支配其特征的几个基本定律来解释...根据位移定律,黑体辐射曲线在与温度成正比的逆波长处达到峰值。Wien的公式λmax= b/t显示最大波长(λmax),Wein的常数(b = 2.8977*10^-3 m.k)和温度(kelvin中的t)。普朗克定律在特定温度下使用eλ= h*c*t^(-5)/cosh(h*c/λkt)-1在特定温度下使用黑体发射的光谱能密度。Stefan-Boltzmann法律显示总发射能量(E)与绝对温度成正比(T^4)。黑体辐射曲线显示,较热的身体在较短的波长处辐射峰值能量,而总能量随温度升高而增加,但在较小的波长下峰值。动物的辐射主要属于红外辐射,而肉眼看不到。然而,Max Planck提出能量以离散量(称为Quanta)来解决这一悖论。的应用包括观察灯泡在加热时从红色变为白光的细丝灯泡,并焊接金属碎片,由于温度的升高而发光不同的颜色,这也用于夜视设备中,通过将红外辐射转换为可见图像,以检测暖血动物和人。黑体辐射具有各种商业应用,包括安全性,测试,照明和供暖,因为它能够发射热能。这种现象用于许多过程中,例如电加热器,炉灶,白炽灯灯泡,太阳,星星,防盗警报,温水动物和夜视设备。Planck的辐射定律允许在任何波长和温度下计算能量强度,从而确定黑体辐射源的特性。选择此类来源取决于诸如发射率,温度,发射面积的大小,冷却时间,热身时间和调节稳定性等因素。在物理学中,理想黑体的概念导致了紫外线灾难,该灾难预测了热平衡时无限能量。偏离瑞利 - 吉恩法律的方程式,构成了量子力学的基础。