电离辐射计量中心摘要。放射性核素中子源为各种中子测量装置提供了一种产生标准中子校准场的便捷方法。需要知道源的以下属性才能表征某一点的场:总中子发射率、中子能谱以及发射强度随角度的变化。假设光谱随角度的变化对于大多数应用而言可以忽略不计。放射性核素中子源的总发射率可以在国家物理实验室 (NPL) 通过硫酸锰浴技术绝对测量,或通过慢化探测器进行比较测量。各种常用源的中子能谱可在公开文献中找到。本报告描述了 NPL 用于测量放射性核素中子源各向异性发射的方法。给出了相对于各种源类型和封装的圆柱轴的测量中子角分布。还给出了使用蒙特卡洛传输代码 MCNP 计算的分布,这些分布通常与测量的分布具有良好的一致性。
2000 年金融服务和市场法免责声明,适用于投资专业人士:本 Skyrora_Deck 仅发送给投资专业人士(该术语定义见 2000 年金融服务和市场法(金融推广)令 2005 年第 19(5) 条(“FPO”))或可以合法分发本文档的人员。因此,没有投资相关专业经验的人员不应依赖本 Skyrora_Deck。
我们提出了一种旨在在四级原子光耦合系统中与携带轨道角动量(OAM)相互作用的四级原子光耦合系统中自发发射系统中的时尚控制的方案。原子包含一个地面和两个激发态,并与两个激光场相结合,形成了一个V子系统,其中上部状态仅通过两个通道腐烂到共同的第四个状态。通过研究原子的各种初始状态,并考虑自发发射通道中的量子干扰的存在或不存在,我们分析了如何在发射光谱上携带OAM的涡流束烙印的特征。光学涡流与量子系统(包括其环境模式)之间的相互作用会引起各种各样的时尚行为,包括二维光谱狭窄,光谱峰增强,光谱峰抑制和空间azimuthal平面中的自发发射或淬火。我们的发现阐明了原子 - 涡流光束相互作用的动力学,并提供了对量子水平上发射特性操纵的见解。
I. i ntroduction a s of今天,将纳米或微卫星放入轨道上的最常见方法是在火箭上的其他有效载荷中乘乘车[1]。乘车方法牵涉到由主要有效载荷确定的几个任务约束。例如任务参数,例如轨道,启动时间表和启动目的地等。一种替代方法是在过去的十年中受到越来越多的关注的替代方法,这是由于其对乘车共享的好处而专用的空气发射。专用的空气启动允许任务参数直接由客户而不是主要有效载荷确定。此外,专用空气发射的发射平台的移动性提供了高地理的灵活性,并可以优化注射到目标轨道所需的倾向。在约10公里的高度下,大气的密度已降至海平面密度的约25%。因此,由于载机飞机是可重复使用的第一阶段,因此它通过大气的最密集的部分运载了发射车,这将大大减少由发射车上的阻力造成的已实现的速度损失。通过在海拔高度释放发射车的发射量较少依赖天气条件,这是延迟发射的最常见原因。原因是发射发生在对流层上方,这是大多数天气现象发生的地方[2]。
致谢 这项工作部分由瑞典国家空间委员会 (SNSB) 通过 NRFP-3 计划和吕勒奥理工大学 (LTU) 资助。我们感谢北方高性能计算中心 (HPC2N) 提供执行本海报中展示的数值模拟所需的计算机资源。我们还要感谢瑞典空间公司 (SSC) 的 Martin Bysell、Klas Nehrman、Mikael Viertotak 和 Per Baldemar 的协助和宝贵的讨论,这些有助于完成这项工作。
海上卫星发射为航天领域提供了诸多优势,例如发射地点的灵活性,但也可能对发射地附近的国家造成安全和环境问题。各国必须适当行使国际法赋予的权力,有效监督其管辖范围内的航天活动。本文探讨了《联合国海洋法公约》在确定国家对此类活动的管辖权和责任方面的应用,认为《联合国海洋法公约》为海上发射提供了一个相关但不完全充分的框架,甚至可能阻止负责任的国家履行《外层空间条约》规定的义务。船旗国制度填补了航天法中的一些管辖权空白,但《联合国海洋法公约》下传统的船旗国管辖权方法可能无法令人满意地实现航天法的目标。在实践中,“适当顾及”的义务对于规范海上发射国的行为至关重要,但要有效解决潜在的海上使用冲突,则需要国家间对话与合作。《外层空间条约》规定的国际责任制度的有效性可能会因行为标准不明确和不完善而受到削弱。此外,有必要确保从公海发射太空物体造成的损害的责任不会“转嫁”到发射设施的船旗国。根据国际空间法目标对《联合国海洋法公约》进行解释可能有助于解决其中一些问题,但只有有关国家进一步合作,才能找到安全海上发射的可行解决方案。
能耗。因此,已经有一个清晰的效果来减少化石燃料的使用,并过渡到投资可再生能源(例如风能,波浪和太阳能)。3然而,这些可再生资源本质上是可变且间歇性的。它们不能用来保证能源供应,因此将可再生能源的份额增加到能源网格是一项具有挑战性的任务,必须伴随有效的能源存储设备。一些领先的储能方法包括电池,4个超级电容器5和氢。6特别是,氢被认为是一种可持续,清洁,环保能量载体,它是水作为燃料电池和其他应用中使用时唯一的副产品。目前,超过90%的氢来自化石燃料的改革,并且没有生成CO 2的气候益处。相比之下,电解可用于产生可再生(绿色)氢。在这种情况下,可再生能源的过量或盈余能量,
在本文中,我们通过求解一维时间独立的schrödinger方程来开发出从表面上从表面发射的精确分析量子理论。可以通过离子,原子,纳米颗粒等引入的Quantu井可以简化为平方电位,其深度为H,宽度D和与表面L的距离。该理论用于分析量子井(D,H和L),阴极性质(工作函数W和Fermi Energy E F)和DC Fifferd f的效果。发现,量子井可能导致谐振隧道增强的轨道发射,最高几个数量级,比裸露的阴极表面大。同时,电子发射 - 能量光谱显着狭窄。强的增强区域受EFL +H≥W + C和EFL≤W的条件,E是基本电荷(正)(正),并且C在DC Fifferd f上持续依赖。还发现,带有直流f的电子发射能源谱的谐振峰遵循εp=εp0-efl,εp0大约是在没有dcfifeld的平方电位中固定在平方电位中的电子的特征力。该理论为高效率场发射器的设计提供了见解,该发射器可以产生高电流且高度简单的电子束。
电子隧穿屏障所花的时间问题对于纳米间隙器件[1-6]来说越来越重要,例如纳米天线(其场发射发生在 50 纳米[7]到 8 纳米[8]的阳极-阴极(AK)间隙上(其中阳极-阴极渡越时间[9]在飞秒量级))和阿秒实验[10-12]。在对薄绝缘层隧穿效应进行后续研究中,Hartman[13]和更早的McColl[14]使用入射波包遇到矩形屏障的模型发现,金属-绝缘体-金属(MIM)薄膜的传输时间由大屏障宽度极限下的群延迟τg=¯h/√μ给出,其中μ是费米能级,是真空功函数:对于一般情况,当μ==1eV时,τg=0.65821fs,顺便说一下,它小于但与Büttiker和Landauer[15]的屏障宽度相关的半经典时间τsc=L/√2/m=1相当。对于 L = 1 nm,约为 6860 fs,但 Winful [16,17] 证明,τ g 是停留时间 τ d 和自干扰时间 τ i 之和,性质截然不同。我们使用时间相关维格纳分布函数 (WDF) 方法 [18] 研究了波包与屏障的相互作用,结果表明,矩形屏障(以及具有类似突变行为的其他屏障)具有一些特性,使得它们用于波包模拟存在问题,即使平面波和指数增长/衰减的 so-