GSATCOM 小型地球同步轨道卫星是一种电信平台,能够承载各种商业有效载荷和任务,包括电视广播、多媒体应用、数据通信以及各种频段的移动或固定服务。小型地球同步轨道卫星的全新模块化灵活设计增强了全球运营商在商业市场上的竞争力。
加利福尼亚州埃尔塞贡多和科罗拉多州科罗拉多斯普林斯——美国太空部队的空间系统司令部 (SSC) 和空间作战司令部 (SpOC) 通过快速反应开拓者 (RRT) 发射执行了加速时间表,以满足特定作战人员的需求。与 SpaceX 合作,猎鹰 9 号火箭于美国东部时间 12 月 16 日晚上 7 点 52 分(太平洋标准时间下午 4 点 52 分)从佛罗里达州布里瓦德县卡纳维拉尔角太空军站 40 号航天发射中心发射了这项国家安全太空发射 (NSSL) 任务,搭载全球定位系统 (GPS) III 太空飞行器 (SV) SV-07。此次任务成功展示了多个太空部队组织的复杂整合工作,从存储中取出现有的 GPS III 卫星,加速整合和运载火箭准备就绪,并快速处理发射。发射的成功证明了双重作战概念。对于 SSC 而言,确保太空进入 (AATS) 通过在不到五个月的时间内执行 NSSL 级发射,成功展示并强调了其与工业界合作的敏捷性,以响应不断变化的国家需求。
发射提供商支持将人员和有效载荷(如国家安全和商业卫星或研究探测器)部署到太空。这些提供商中的大多数告诉 GAO,美国太空运输基础设施(位于全国各地)通常足以满足其客户的当前需求。这种情况部分是由于发射提供商对发射场的投资以及州和地方的资金。发射提供商和场地运营商都在寻求未来的改进,但在所需基础设施的类型和位置上有所不同。一些发射提供商表示,需要改进基础设施以增加现有繁忙发射场的发射能力,而一些场地运营商表示,新的基础设施和额外的发射场将有助于扩大国家的整体发射能力。
我们处在一个日益两极分化的环境中,尤其是俄罗斯入侵乌克兰。这场进攻性战争的直接后果是全球约 20% 的火箭发射能力消失,对欧洲的太空计划产生了重大影响。这对欧洲来说是一个挑战,但对 SSC 和瑞典来说也是机遇,因为 Spaceport Esrange 拥有新的卫星发射能力。地缘政治的复杂性早已意味着 SSC 退出了不属于公司所有者指示框架的业务(在业务运营中考虑瑞典的外国安全和国防政策利益),这导致了不断调整和在不断增长的市场中出现新的机会,尤其是在国防和安全方面。
印度空间研究组织通常被视为印度太空计划之父。该组织最初只有适度的卫星发射能力,专注于开发本土技术。● 卫星运载火箭:多年来,印度空间研究组织开发了几代运载火箭,包括卫星运载火箭 (SLV)、增强型卫星运载火箭 (ASLV)、极地卫星运载火箭 (PSLV) 和地球同步卫星运载火箭 (GSLV)。每一代都提高了有效载荷能力和可靠性。
论点:任何太空太阳能发电计划,无论是国家级还是国际级,都需要非常庞大的低成本(因此是完全可重复使用的)太空运载需求,数量是目前全球发射能力的数倍。SpaceX 在可重复使用发射方面处于领先地位,这很可能会刺激其他供应商的竞争。SBSP 计划将为开发这些能力提供市场需求信号,尽管它可能还需要政府支持来开发可重复使用航天飞机的基础技术。
1 问题.... .... .... .... .... .... .... .... .... .... .... .... 1 运输成本高且影响广泛.... .... .... .... .... .... 1 当前运载火箭成本范围.... .... .... .... .... .... .... 1 独特的运输要求.... .... .... .... .... .... .... .... 2 确定每次发射消耗品的成本.... .... .... .... .... 2 确定每次发射航天飞机的成本.... .... .... .... .... 2 代表性运载火箭成本.... .... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 航天飞机. . . . . . . . . . . . . 5 运载火箭成本分数. . . . . . . . . . . . 5 DSP 发射成本分数. . . . . . . . . . . . . 5 GPS 发射成本分数. . . . . . . . . . . . . 6 飞行器性能值. . . . . . . . . . . . . . 6 有效载荷发射效率值 . . . . . . . . . 7 预期效率趋势 . . . . . . . . . . 8 飞行器开发成本和扩展效应 . . . . . 8 有限的发射能力 . . . . . . . . . . . 9 成本目标和成本现实 . . . . . . . . . . . 10 商业发射行业考虑因素 . . . . . . 11 国外竞争 ...... ...... ......
随着北美航空公司的 F-100 超佩刀的成功,该公司提出了一种性能更高的变体,最初称为 F-100B。随着 F-100B 设计的演变,很明显升级实际上将是一架全新的飞机,该项目被命名为 F-107A。虽然性能和载重能力有了显著提高,但空军选择了共和 F-105 雷公而不是 F-107。在 F-107A 的研发过程中,美国空军还尝试在其几种战斗机设计中添加零长度 (ZEL) 发射能力,包括共和 F-84 和 F-100,而德国空军也使用洛克希德 F-104 星战斗机测试了 ZEL 发射。
NSSL 系统包括运载火箭、发射能力、标准有效载荷接口、支持系统、任务集成(包括任务独特要求)、飞行仪表和射程接口、特殊研究、飞行后数据评估和分析、任务保证、基础设施、关键部件工程、政府任务主管支持、系统/流程和可靠性改进、培训和其他技术支持。该系统还包括发射场运营活动、支持保证访问的活动、系统集成和测试以及其他相关支持活动。此外,该计划正在努力开发两个或更多满足所有国家安全太空发射要求的国内、商业上可行的航天发射提供商。