I. i ntroduction a s of今天,将纳米或微卫星放入轨道上的最常见方法是在火箭上的其他有效载荷中乘乘车[1]。乘车方法牵涉到由主要有效载荷确定的几个任务约束。例如任务参数,例如轨道,启动时间表和启动目的地等。一种替代方法是在过去的十年中受到越来越多的关注的替代方法,这是由于其对乘车共享的好处而专用的空气发射。专用的空气启动允许任务参数直接由客户而不是主要有效载荷确定。此外,专用空气发射的发射平台的移动性提供了高地理的灵活性,并可以优化注射到目标轨道所需的倾向。在约10公里的高度下,大气的密度已降至海平面密度的约25%。因此,由于载机飞机是可重复使用的第一阶段,因此它通过大气的最密集的部分运载了发射车,这将大大减少由发射车上的阻力造成的已实现的速度损失。通过在海拔高度释放发射车的发射量较少依赖天气条件,这是延迟发射的最常见原因。原因是发射发生在对流层上方,这是大多数天气现象发生的地方[2]。
摘要研究和验证量子力学基础与一般相对论之间的联系将需要极灵敏的量子实验。为了最终洞悉这一引人入胜的物理领域,迟早会在太空中实现专门的实验成为必要。量子技术,尤其是量子记忆,正在提供新颖的方法,以达到确定的实验结果,因为它们的高级发展状态得到了数十年的进步。将量子状态存储长时间的时间将使研究天文基准的铃铛测试,以提高测量精度以研究引力对量子系统的重力影响,或者启用量子传感器和时钟的分布式网络。我们在这里促进了为空间中基本物理学开发量子记忆的情况,并讨论了不同的实验以及潜在的量子记忆平台及其性能。
抽象的发射车系统是使用遗产和新硬件设计和开发的。对遗产硬件的设计修改以适合新的功能系统要求可能会影响遗产可靠性数据的适用性。新设计系统的风险估计必须是从通用数据源(例如使用可靠性预测方法)(例如在MIL-HDBK-217F中涉及的方法)开发的。必须将故障估计值从通用环境转换为使用系统的特定操作环境。此外,应将数据源适用于当前系统的某些资格。在这种情况下表征数据适用性对于开发模型估算至关重要,这些模型估算支持对设计变化和贸易研究的自信决策。本文将展示一种基于原始数据的源和操作环境,建议对目标车辆的认知成分不确定性,以展示一种数据源适用性分类方法。使用启发式准则确定源适用性,而操作环境的翻译是通过将统计方法应用于MIL-HDK-217F表来完成的。
自主飞行终止系统(AFTS)正在逐步发射车辆上逐步使用,以替换在发生异常时终止飞行或破坏所需的地面人员和基础设施。此自动化使用板载实时数据和编码逻辑来确定飞行是否应自终止。对于未驾驶的发射车,需要FTS系统来保护公众并由美国太空部队(USSF)支配。对于机组人员任务,NASA必须根据人类评级标准来增强机组人员安全范围的要求,并根据人类评级标准对每次飞行进行认证,从而增加了针对最初用于未拖欠任务的软件的独特要求。本公告总结了与AFT有关的新信息,以提高人们对关键区别的认识,总结考虑因素,并概述将AFT纳入人等级系统的最佳实践。
航空航天行业以开发和采用尖端技术来应对设计轻型高性能车辆所涉及的挑战而闻名。很明显,基于设计的技术有助于以其速度和有效载荷能力推动航空航天车辆的设计,但在许多情况下,制造业的进步使这些不断发展的设计得以生产。新空间行业的经济力量正在使公司不仅考虑工程产品的未来,而且还要考虑优化制造过程本身的方法,以由更广泛的机器组成,其固定工具较少,可以随着明天的生产需求而发展。从1981年的成立开始,与传统的“减法制造”相比,加性制造(通常称为3D打印)提供了新的可能性,它通过启用按需制造,解锁新的设计功能并以无与伦比的速度允许迭代。虽然3D打印机的设计在控制印刷运动,可打印材料属性和机器可靠性方面受到限制,但随着公司通过扩大可打印材料的数量和类型,打印材料的数量和类型,并提高印刷功能,印刷功能,印刷信封音量和印刷速度,每年都会带来新的打印技术突破。由于价格下降和易用性的提高,随着越来越多的组织可以使用该技术,3D打印变得更加普遍。在大学环境中,3D打印提供
国际空间站(ISS)和私营公司也开始考虑参与该领域。在下一步的空间利用率中,有一个计划首先使用发射车将材料和设备从地面运输到低地轨道(LEO)的空间站,然后在此类太空站中制造和组装卫星,然后将卫星从车站从车站放到轨道上进行任务。太空商业化需要比以前更严格地降低启动成本。因此,从地球到狮子座空间站的运输任务,可重复使用的发射车被认为是在降低发射成本方面使用的。例如,正在开发可重复使用的发射车,例如太空X(美国)的猎鹰。
简介印度太空研究组织(ISRO)自成立以来一直处于太空技术和勘探的最前沿。通过使用其关键资源,该组织多年来在太空技术方面取得了重大进展,将印度定位为全球太空领域的主要参与者。ISRO的53年旅程已经取得了惊人的发展,从Thumba的开始到目前作为全球参与者的地位。 空间运输,基础设施,科学,应用,人类勘探,机器人,人工智能和量子技术都是这样的例子。 ISRO目睹了太空技术和技术创新的进步。 太空运输系统●在1970年代,基于固体刺激的火箭的发展能够将30公斤有效载荷放在120公里的高度上,这标志着太空运输系统的开始。 ●随后创建了第一代发射车,即卫星发射车(SLV)和使用液体螺旋技术的增强SLV(ASLV)。 ●固体和液体推进的整合以及各种至关重要的技术的发展,导致了极地卫星发射车(PSLV)的发展,并有能力将1700 kg有效载荷放入极地轨道中。 ●低温推进发动机的土著发展是第三代火箭的建设中的重要技术飞跃,即GSLV发射车辆能够在地理同步转移轨道(GTO)中提供2000 kg有效载荷。ISRO的53年旅程已经取得了惊人的发展,从Thumba的开始到目前作为全球参与者的地位。空间运输,基础设施,科学,应用,人类勘探,机器人,人工智能和量子技术都是这样的例子。ISRO目睹了太空技术和技术创新的进步。太空运输系统●在1970年代,基于固体刺激的火箭的发展能够将30公斤有效载荷放在120公里的高度上,这标志着太空运输系统的开始。●随后创建了第一代发射车,即卫星发射车(SLV)和使用液体螺旋技术的增强SLV(ASLV)。●固体和液体推进的整合以及各种至关重要的技术的发展,导致了极地卫星发射车(PSLV)的发展,并有能力将1700 kg有效载荷放入极地轨道中。●低温推进发动机的土著发展是第三代火箭的建设中的重要技术飞跃,即GSLV发射车辆能够在地理同步转移轨道(GTO)中提供2000 kg有效载荷。●开发更先进的发射车,即发射车辆MK3(LVM3),才能发射高通量通信卫星。●LVM3的有效载荷能力为4000公斤,由世界第三大固体助推器,高容量液体和低温发动机提供动力。●ISRO最近引入了小型卫星发射车(SSLV)。这是一款旨在快速周转的三阶段发射车,能够将500千克卫星发射到500公里的平面轨道上。
摘要:质量和可靠性保证在现代工程中的重要性确实随着太空活动的增长而被强调。,这只是倾向于将可靠性称为太空科学和技术的最大旋转。空间系统(既有发射车和航天器)的特征是无人看管的操作的特征,并具有高度的可靠性。而,关于可靠性和质量保证计划的广泛要求对于发射车和航天器都是相似的,而R&QA每个学科的特定要求由于其独特的操作配置文件而异。与单次射击任务的发射车不同,航天器需要长时间运行(12-15年),而在敌对的太空环境下进行最少的干预。本文详细介绍了针对航天器项目成功实现子系统和系统的特定R&QA规定 /要求。设计保证方法,可靠性分析,例如衍生分析,FMECA,FTA,最坏情况电路分析,潜行电路分析,可靠性分配/预测,测试和评估,非符合性控制,审查,审查等,除了常规的质量控制活动(如零件/材料过程/流程控制)外,除了传统的质量控制活动之外。关键字:质量,可靠性,航天器,发射车,太空环境,生命保证,环境测试,不合格1简介
带头的小型卫星发射车(SSLV),可重复使用的发射车(RLV-LEX)和Gaganyaan中止任务。担任DOS秘书,启动了2023年国家空间政策,并与ISRO和私人企业促进了合作。ISRO:成立于1969年8月15日,继承了印度国家太空研究委员会(INCOSPAR),该委员会于1962年在Vikram Sarabhai博士的带领下成立,以推动太空技术的国家发展。