兴趣探索涂层涂料化合物SESCO 125 Vikram Sarabhai太空中心已经开发了针对发射车和卫星中特定应用的不同类型的涂层化合物。这些材料也可能找到各种工业应用。这些是从树脂和不同的固化剂组合中得出的,该组合用各种类别的材料(例如挠性剂,变形剂,填充剂,颜料,固化加速器等)进行了修饰。SESCO-125是一种基于聚二甲基硅氧烷(PDMS)的室温可固化的硅胶涂层系统,其中含有无机填充剂和其他添加剂,可将其粘贴在其涂层的系统中延迟。它用于发射基座和液体发动机的阻燃涂层中。sesco-125是通过将聚合物和填充物混合中的sigma搅拌机和三辊磨机中的混合物来处理的。产品的A部分是灰色,粘性材料,B部分是透明的。中心每年需要大约4吨SESCO-125。产品规格1。密度,g/cc:1.5 + 0.2 2。RT,KSC的拉伸强度:8 -18 3。 RT的伸长率,%:70-200 4。 al,KSC上的圈剪切强度:3 -7 5。 PC -10上的圈剪切强度,KSC:3 -7 6。 在100 o C Cal/g/o C时的特定热量:0.25 - 0.35 7。 在100 o C,al/o c/sec.cm x 10 –4:8.5 + 1.0 8中的热导率 限制氧指数,%:33(min)ISRO提议将此知识许可到有能力的小/中规模硅硅硅酮的聚合物制造商,以寻找新产品线。RT,KSC的拉伸强度:8 -18 3。RT的伸长率,%:70-200 4。al,KSC上的圈剪切强度:3 -7 5。PC -10上的圈剪切强度,KSC:3 -7 6。在100 o C Cal/g/o C时的特定热量:0.25 - 0.35 7。在100 o C,al/o c/sec.cm x 10 –4:8.5 + 1.0 8中的热导率限制氧指数,%:33(min)ISRO提议将此知识许可到有能力的小/中规模硅硅硅酮的聚合物制造商,以寻找新产品线。有兴趣的各方应立即回应其目前的活动和产品线,功能,基础架构,他们自己的产品评估以及他们实施技术的计划。有关更多详细信息,请联系:技术转移与工业协调部Vikram Sarabhai空间中心印度空间研究组织Thiruvanathapuram- 695 022 PH:0471-2564081/2565749电子邮件:ttic@vssc.gov.in
核动力船舶推进 © M. Ragheb 6/21/2021 1.简介 有几种趋势正在塑造海军舰艇技术的未来愿景:全电动舰艇、全封闭喷射泵推进器、定向能激光、微波和电磁武器、高超音速巡航导弹、隐形技术、无人驾驶飞行器 (UAV)、群体水下无人驾驶飞行器 (UUV) 机器人潜艇、推进器喷水推进、磁流体动力推进、濒海舰艇和停泊驳船用于发电。全电动船舶推进概念被采用为未来美国水面战斗动力源。下一个发展或先进电力系统 (AEPS) 涉及将几乎所有船上系统转换为电力;甚至最苛刻的系统,例如航空母舰上的推进器和弹射器。它将包括新武器系统,例如现代电磁轨道炮和自由电子激光器以及飞轮和超级电容器储能系统。美国海军计划到 2030 年代中期将其 284 艘舰艇舰队扩大到 355 艘。随着高超音速武器运载系统的出现,将美国海军 (USN) 配置为具有远程无人机打击能力的小型核动力平台是未来的潮流。高超音速将由一支由小型和快速舰艇组成的分布式舰队来对抗。任何类型的导弹群威胁都对美国航母构成威胁,而它们可能会变得更小,由一组由人类驾驶的飞机指挥的无人机组成。它们将是垂直发射车,随身携带远程一次性加油机或微型核反应堆,作为长期盘旋和续航的能源。这些舰船将更小,采用核动力。常规舰船每隔几天就需要加油,而且必须配备加油机。核动力舰船的速度和续航能力要快得多。太空是下一个战场,武器平台将更多、更小、无人驾驶。航空母舰是意图和全球野心的声明,也是军事力量的明显投射。它们是一支多才多艺的强大力量,能够进行人道主义和灾难救援以及高端作战。拥有 5,000 名船员的航空母舰正面临脆弱性危机,这将导致小型舰船从分散地点发射无人机。美国海军拥有 10 艘航母,英国有两艘,中国有一艘,正在建造另一艘。一艘美国航母上有 3,000 多名水手。俄罗斯、法国和意大利各有一艘航母,印度也加入了这一行列。美国海军每年要花费 1 亿多美元来维持一艘尼米兹级航母的海上运行,这还不包括飞行作业、弹药和船员工资的费用。它们作为打击群在高威胁地区运作,包括防空驱逐舰、反潜护卫舰和攻击潜艇,以及运载食物和弹药的油罐车和固体支援舰。世界各地的海军都使用三分法则:或者说每艘在海上的船,一艘准备部署,而另一艘则返回港口进行维护。核动力航母(如尼米兹级)的航程不受限制,而常规动力航母(如伊丽莎白女王号)的航程为 10,000 英里。
I.介绍1969年7月20日,标志着人类历史上的历史成就。第一次,两个人走在一个不是地球的天体上,固定了人类探索史上的基本里程碑。这一成功是从技术和经济的角度来达到巨大的效果,是美国实现的,以应对苏联太空计划的较早成功,这是由创建和成功启动的第一次创建和成功启动的空间,并与1957年的Sputnik一起,并在1957年及其造成的交流[1,2],以及1,2],又是2 [1,2],又有一个人的交流。 Vostok 1,Yuri Gagarin,1961年[3]。这是历史上遇到的第一个正式步骤[4],尤其是月球竞赛[5]。尽管有最初的技术差距,但多年来,美国太空的进步取得了动力,而Apollo任务的设置[6]代表了整个美国太空计划的最高点。能够实现这样一个目标,需要开发几种新技术。当然,有能力计算能够满足整个任务的所有要求的轨迹。这在Apollo指导计算机的可用计算能力方面和用于指导土星V [8]的发射车数字计算机方面有严格的要求。在发动机切割之前的最后几秒钟进行了特殊护理,以避免溶液中的奇异性。在这种情况下,我们可以将数值优化通常放在[13]中,尤其是直接方法[14]。在上升指导中,火箭采用了所谓的迭代路径自适应指导,利用了最佳控制理论[9],并修改了切线线性转向定律的修改版本,在此期间,其参数经常更新。另一个基本阶段由翻译注射(TLI)的动作表示,该动作使航天器能够离开地球范围的侵入范围到达月球。对于阿波罗11(Apollo 11),设想将哥伦布模块放在自由回报路径上[10],并且此选择需要在机动末端满足的准确态度和位置条件。第三个也是最重要的阶段是月球着陆:鉴于上述计算局限性,NASA工程师在承诺,创造力和专有技术方面对其进行了补偿。这种态度的一个绝妙的例子是基于多项式方案的月球着陆指导,尽管其计算复杂性低[11],但它的电子趋势形式也是最佳的[12]。然而,在过去几十年中,在计算能力和开发的重新构建优化算法方面取得的进展极大地扩展了当今可用的大量方法和工具,以分析相同的问题。在解决最佳控制问题的直接方法中,伪谱方法占据了相关位置。在本文中,我们希望通过使用Spartan [19,24,25]来重建Apollo 11任务的三个关键阶段这些方法[15],基于用于转录问题的时间步长的不均匀分布,事实证明对大型最佳控制问题[16]非常有效,包括国际空间站的零促性剂重新定位[17]。进一步的应用涉及大气进入指导[18,19],火星下降和小行星着陆轨迹计算[20],月球着陆可及性分析[21],卫星在椭圆轨道上的态度稳定[22]和飞机轨迹产生问题[23]。