在过去的 50 年里,真空技术已经得到了长足的发展和成熟,但在工业应用方面仍然存在重大挑战需要克服,以确保真空处理产品的可靠性和质量,并提高日益复杂的真空工艺的成本效率。现有的真空测量标准为平衡条件下的纯气体提供从 10 -9 Pa 到 10 5 Pa 的可追溯性。然而,工业过程很少使用纯气体(例如电子制造中的物理和化学气相沉积或硬化工具的涂层等),并且经常在压力动态变化的非平衡环境中进行(例如光盘制造中的物理和化学沉积)。缺乏工业相关标准和可追溯性意味着制造商和最终用户通常难以获得其工艺参数的可靠和有代表性的测量结果。
这是预发布版本。这是以下文章的同行评审版本:Gao, Y., & Zhang, B. (2022). 探究机械稳定的固体电解质界面及其对设计策略的影响。Advanced Materials, 35(18), 2205421,最终版本已发布于 https://doi.org/10.1002/adma.202205421。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。未经 Wiley 明确许可或适用法律规定的法定权利,不得对本文进行增强、丰富或以其他方式将其转化为衍生作品。不得删除、隐藏或修改版权声明。该文章必须链接到威利在线图书馆上的威利记录版本,并且必须禁止第三方从威利在线图书馆以外的平台、服务和网站嵌入、框架或以其他方式提供该文章或其页面。
中心和以自我为中心是两种不同类型的空间编码。先前的研究报告了两种类型的背注意网络的参与。为了消除结果中可能的特定于任务的混杂,本研究采用了共同的任务来读取同义中心(ASC)和以中心(ESC)(ESC)的空间编码的独特性。22名参与者完成了定制设计的视觉空间任务,并使用功能性近红外光谱(FNIRS)记录了氧化血红蛋白浓度(O 2 -HB)的变化。最低绝对的收缩和选择算子 - 正则化主成分(LASSO-PCR)算法用于识别预测ASC和ESC条件的反应时间的皮质位点。右上额回(SFG)和中央后回(POG)中O 2 -HB浓度的显着变化都是两种条件的共同点。相比之下,O 2 -HB浓度的变化是ASC所独有的,在中央前回(PG)和室内沟内(IPS)中,ESC所独有的是在右后壁叶叶(IPL)中。FNIRS的结果表明,两种类型的空间编码都共同提出了自上而下的注意力,编码视觉映射过程和响应映射过程是共同的。与以自我为中心的以中心为中心的空间编码相比,倾向于要求更多的关注和更新空间信息。未来的研究是使用其他视觉空间任务进一步告知空间编码过程中的任务特异性。
©2022。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/。
在发现时不需要修复历史发行,允许污染蔓延,不适用于不适用于干洗者,家具剥离,自动修理,自动修理或产生危险废物的财产的历史发行,或产生危险的废物的地方,如果不适用于在范围内适用于在范围内不需要在范围内进行转移的行动,并且是否需要采取行动,如果某些企业的行动是在某种程度上转移的措施。布朗菲尔德使财产转移复杂化部门工作人员的耗时,专注于行政职能使脱离州企业所有者和金融机构的混淆
这是Taylor&Francis在2020年12月2日发表的一篇文章(在线发布)的一篇文章,网址为:http://www.tandfonline.com/10.10.1080/02699052.202020202020.1850864。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。版权声明不得删除,遮盖或修改。该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。