● 识别可能导致情绪失调和情绪回避的情绪障碍,并加剧羞耻/内疚/恐惧循环和回避 ● 描述 ACT 的 hexflex 模型如何帮助客户做出积极而有意义的行为改变。 ● 为 ACT 的六个核心流程中的每一个应用一项具体的以客户为中心的技能 ● 在每个核心流程中考虑神经发散大脑 ● 介绍神经发散大脑的其他考虑因素(例如完美主义和取悦他人),但这些是每个领域的完全独立的演示
神经科学的一个主要问题是,研究结果是动物临床前研究到临床结果的不良翻译性。比较神经科学可以通过研究多种物种在神经回路功能的物种特异性和一般机制之间差异来克服这一障碍。针对性的神经回路的操纵通常取决于遗传解剖,并且该技术的使用仅限于几种模型物种,从而限制了其在比较研究中的应用。然而,基因组学的持续进展使得在越来越多的物种中可以实现遗传解剖。为了证明比较基因编辑方法的潜力,我们开发了一种病毒介导的CRISPR/CAS9策略,该策略预测靶向> 80种啮齿动物物种中的催产素受体(OXTR)基因。该策略专门降低了所有评估物种(n = 6)的OXTR水平,而不会引起总体神经元毒性。因此,我们表明基于CRISPR/CAS9的工具可以同时在多种物种中起作用。因此,我们希望鼓励比较基因编辑并改善神经科学研究的转化性。
颞叶癫痫中非典型皮质不对称和萎缩模式的拓扑发散Park, B.-y.;拉里维尔,S.;罗德里格斯-克鲁塞斯,R.;罗耶,J.;塔瓦科尔,S.;王,Y.; Caciagli,L.; Caligiuri,M.E.;甘巴德拉(Gambardella),A.; Concha,L.;凯勒,SS; Cendes,F.;阿尔维姆(MKM);安田,C.; Bonilha,L.; Gleichgerrcht,E.;福克,NK;克雷尔坎普(BAK);洛德,M.; Podewils,F.冯;朗纳,S.;鲁默尔,C.; Rebsamen,M.;威斯特,R.;马丁,P.; Kotikalapudi,R.;本德,B.;奥布莱恩,T.J.;法律,M.;辛克莱,B.; Vivash,L.;关,P.;德斯蒙德,PM;马尔帕斯,CB;他,E.;阿尔胡塞尼,S.;多尔蒂,C.P.卡瓦莱里,GL;德兰蒂,N.;卡尔维宁,R.;杰克逊,G.D.; Kowalczyk,M.;马斯卡尔奇,M.; Semmelroch,M.;托马斯,R.H.; Soltanian-Zadeh,H.; Davoodi-Bojd,E.;张,J.; Lenge,M.;格里尼(Guerrini),R.;巴托利尼,E.;哈曼迪,K.;福利,S.;韦伯,B.; Depondt,C.;阿布西尔,J.;卡尔,SJA;阿贝拉,E.;理查森,国会议员;德文斯基,O.;塞韦里诺,M.;斯特拉诺,P.;帕罗迪,C.; Turtledove,D.;哈顿,S.N.你,SB;邓肯,J.S.; Galovic,M.;惠兰,CD; Bargalló,N.; Parente,J.; Conde-Blanco,E.;沃达诺,AE; Tondelli,M.;梅莱蒂,S.;孔祥哲;弗兰克斯,C.;费舍尔,SE;卡尔达鲁,B.;赖顿,M.;拉巴特,A.;西索迪亚,SM;汤普森,PM;麦当劳,C.R.;贝尔纳斯科尼,A.;贝尔纳斯科尼,N.; Bernhardt,BC 2022,文章/致编辑的信(Brain,145,4,(2022),第 1285-1298 页)
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月14日。 https://doi.org/10.1101/2025.01.11.632556 doi:Biorxiv Preprint
近一个世纪以来出现了大量关于烯烃Z/E异构化的报道,但其中绝大多数仍然局限于二、三取代烯烃的异构化,四取代烯烃的立体特定Z/E异构化仍是一个尚未开发的领域,因此缺乏轴手性烯烃的立体发散合成。本文我们报道了通过不对称烯丙基取代异构化对四取代烯烃类似物进行对映选择性合成,然后通过三重态能量转移光催化对其进行Z/E异构化。在这方面,可以有效实现轴手性N-乙烯基喹啉酮的立体发散合成。机理研究表明,苄基自由基的生成和分布是保持轴手性化合物对映选择性的两个关键因素。
收敛-发散 (CD) 喷嘴的优化对于整个航空航天工业的各种应用都至关重要 - 这些领域与 NASA 的使命密切相关。这项研究特别关注机器学习(特别是遗传算法)和计算流体动力学 (CFD) 软件在 CD 喷嘴几何优化问题中的应用。通过操纵三次样条连接的控制点的位置,可以创建一个开放的设计空间并驱动性能最佳的单个 CD 喷嘴产生通过欧拉方程计算的等熵流场 (Δ𝑆= 0.0𝐽𝑘𝑔𝐾)。本文产生的最佳情况对 Δ𝑆= 0.935𝐽𝑘𝑔𝐾 的局部最小几何形状进行了初始猜测。 395 万美元。该项目奠定的基础为进一步应用遗传算法优化 CD 喷嘴和其他亚音速/超音速流体组件打开了大门。
开放存取本文采用知识共享署名4.0国际许可证,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并表明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非在资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出了允许的用途,您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
二氟甲基化和二氟烷基化试剂,其中二氟甲基亚砜亚胺 10 和砜 9,11 因其在有机合成中的独特反应性而引起了广泛关注。二氟烷基亚砜亚胺和砜试剂的高度可调功能性在不同反应条件下表现出不同的反应性和选择性。Hu 等人报道,N-甲苯磺酰基-S-二氟甲基-S-苯基亚砜亚胺 [PhS(O)NTsCF 2 H] 可以在 NaH 存在下释放二氟卡宾,被 S-、N- 和 C-亲核试剂捕获(方案 1 a,左)。10a 相反,光催化使 PhS(O)NTsCF 2 H 成为二氟甲基自由基来源,用于烯烃的氧化二氟甲基化。 12 二氟甲基苯基砜 (PhSO 2 CF 2 H) 也采用了类似的活化策略,以 LHMDS 为碱进行去质子化生成亲核性 PhSO 2 CF 2 − 物质,13 而在电化学条件下则得到亲电性 PhSO 2 CF 2 自由基物质(方案 1 b)。14 然而,同时具有亚砜亚胺和砜官能团的二氟烷基化试剂的不同反应性和选择性尚未见报道(方案 1 c)。
尽管一致的证据表明认知障碍是轻度中风患者的常见后遗症,但很少有研究关注它,也没有研究病变部位对认知功能的影响。关于轻度中风和病变部位对认知功能影响的神经机制的证据有限。这促使我们对不同病变部位的轻度中风患者的功能性脑网络特性进行全面而定量的研究。具体而言,在本研究中引入了一种实证方法来探索轻度中风引起的认知改变对认知任务期间功能性脑网络重组的影响(即视觉和听觉异常)。从三组(即 40 名皮质梗塞患者、48 名皮质下梗塞患者和 50 名健康对照者)估计了脑电图功能连接。使用图论分析,我们定量研究了整体和节点层面的功能性脑网络的拓扑重组。结果显示,两组患者在两项任务中的行为表现均明显较差,反应时间明显变长,反应准确度降低。此外,两组患者的整体和局部效率均下降,表明与中风相关的信息处理效率轻微受损,且与病变部位无关。在节点层面,两组患者均呈现出发散和收敛的节点强度分布模式,这意味着不同病变部位的轻度中风会导致视觉和听觉信息处理过程中的复杂区域改变,而某些强大的认知过程与病变部位无关。这些发现首次定量揭示了轻度中风引起的认知障碍的复杂神经机制,扩展了我们对不同病变部位引起的认知相关大脑网络潜在改变的理解,可能有助于促进中风后的管理和康复。
