对比散度是一种常用的基于能量的模型训练方法,但众所周知,它在训练稳定性方面存在困难。我们提出了一种改进对比散度训练的改进方法,即仔细研究一个难以计算且经常为了方便而被忽略的梯度项。我们表明,这个梯度项在数值上是显著的,在实践中对于避免训练不稳定很重要,同时易于估计。我们进一步强调了如何使用数据增强和多尺度处理来提高模型的鲁棒性和生成质量。最后,我们通过实证评估了模型架构的稳定性,并在一系列基准测试和用例(如图像生成、OOD 检测和组合生成)上展示了改进的性能。
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
图 1 RolR 诱变、选择和半自动化高通量筛选工作流程。a. 全构象的 RolR 二聚体(PDB:3AQT),以及配体结合口袋的结构,其中残基 D149 为黑色,间苯二酚为青色,5Å 内选择用于诱变的 19 个残基为橙色,5Å 和 8Å 之间的残基为紫色。b. 组合活性位点饱和度测试 (CAST) 的笛卡尔结合口袋图。c. 六个氨基酸组组成了要用于诱变的 19 个残基。d. 生物传感器 TetA 双重选择的原理,使用 NiCl 2 对转录抑制能力进行负向选择,使用四环素对目标配体进行正向选择。e. 半自动化高通量筛选。在第 1 天,为每个候选分子挑选约 500 个菌落。第二天,使用声学液体处理器将 IPTG 和小分子分配到 384 孔板中。生长的菌落被稀释并分配到 384 个孔板中,使用液体处理工作站测试传感器的不同状态。第三天,荧光
摘要 — 通过使用一组数学方程式捕捉一阶性能现象,分析模型使架构师能够比周期精确模拟快几个数量级地进行早期设计空间探索。但是,如果由于模型不准确而导致通过模型获得的结论具有误导性,则这种速度优势无效。因此,实用的分析模型需要足够准确,以捕捉广泛应用程序和架构配置中的关键性能趋势。在这项工作中,我们专注于分析建模新兴的内存发散 GPU 计算应用程序的性能,这些应用程序在机器学习和数据分析等领域很常见。这些应用程序的空间局部性较差,导致 L1 缓存频繁阻塞,因为应用程序发出的并发缓存未命中数量远远超过缓存可以支持的次数,从而削弱了 GPU 使用线程级并行 (TLP) 隐藏内存延迟的能力。我们提出了 GPU 内存发散模型 (MDM),该模型忠实地捕捉了内存发散应用程序的关键性能特征,包括内存请求批处理和过多的 NoC/DRAM 排队延迟。我们根据详细的模拟和真实硬件验证了 MDM,并报告了以下方面的重大改进:(1) 范围:除了非内存发散应用程序外,还能够对流行的内存发散应用程序进行建模;(2) 实用性:通过使用二进制插装而不是功能模拟来计算模型输入,速度提高了 6.1 倍;(3) 准确性:平均预测误差为 13.9%,而最先进的 GPUMech 模型为 162%。
Heumatoid关节炎是最常见的免疫疾病之一。它的主要表现是由对称,多关节疼痛和肿胀的特征,通常涉及手和脚的小关节。然而,类风湿关节炎是一种与多种共存疾病和外部表现相关的系统疾病。炎症性滑膜炎的发作是由于遗传因素和特定环境暴露的相互作用而引起的。 疾病过程始于几年,直到临床明显的关节炎,并且表现为无症状免疫功能障碍的连续性,并在疾病可以分类为类风湿关节炎之前先进行了各个阶段。 本综述着重于血清阳性类风湿关节炎,其标志是自身抗体对翻译后修饰的蛋白质(包括抗柠檬酸蛋白质抗体)(ACPAS(ACPAS,被测量为抗循环柠檬酸柠檬酸酯肽抗体抗体));结合免疫球蛋白的FC部分的特异性自身抗体,称为类风湿因子;或两种抗体类型。 血浆类风湿关节炎是一个独立的实体,标志着多重关节炎,但定义不明的致病机制。 血清神经性关节炎的过程通常对关节的破坏性较小,1但是治疗方法类似于血清阳性疾病的方法。 与牛皮癣这样的免疫疾病相反,牛皮癣在很大程度上取决于主要的白细胞介素-23-室内17途径,类风湿关节炎具有多个潜在的临床表现途径。炎症性滑膜炎的发作是由于遗传因素和特定环境暴露的相互作用而引起的。疾病过程始于几年,直到临床明显的关节炎,并且表现为无症状免疫功能障碍的连续性,并在疾病可以分类为类风湿关节炎之前先进行了各个阶段。本综述着重于血清阳性类风湿关节炎,其标志是自身抗体对翻译后修饰的蛋白质(包括抗柠檬酸蛋白质抗体)(ACPAS(ACPAS,被测量为抗循环柠檬酸柠檬酸酯肽抗体抗体));结合免疫球蛋白的FC部分的特异性自身抗体,称为类风湿因子;或两种抗体类型。血浆类风湿关节炎是一个独立的实体,标志着多重关节炎,但定义不明的致病机制。血清神经性关节炎的过程通常对关节的破坏性较小,1但是治疗方法类似于血清阳性疾病的方法。与牛皮癣这样的免疫疾病相反,牛皮癣在很大程度上取决于主要的白细胞介素-23-室内17途径,类风湿关节炎具有多个潜在的临床表现途径。从慢性疾病中,疾病从临床前类风湿关节炎进展,涉及患者在患者之间可能有所不同的致病途径和细胞谱系,这会使治疗效果复杂化。尽管临床表型非常相似,但某些途径在非分裂患者中占主导地位,但对靶向疗法的临床反应的多样性强调。在过去的三十年中,类风湿关节炎的治疗中存在革命性变化,但许多患者仍然患有持续性疾病。鉴定个别患者中特定的致病机制的能力将通过将治疗定向到这些靶标来改善预后。血清阳性类风湿关节炎的临床前阶段的特征是免疫,通常与粘膜表面相关,包括口腔腔,肺和胃肠道,以及局部和系统的ACPA。可以在血液中检测到这些自身抗体的中位数在关节炎发作前4。5年。2随着自身抗体水平的增加,类风湿关节炎的风险随着时间而增加。随着这种临床前阶段的发展,随之而来的是针对蛋白质表位阵列的ACPA,同时血液中的Pro炎症蛋白的增加,最终导致关节炎症。3对改变肽的免疫反应不仅限于柠檬化;甲状腺素,丙二醛 - 乙醛加合物形成和其他蛋白质修饰
● 识别可能导致情绪失调和情绪回避的情绪障碍,并加剧羞耻/内疚/恐惧循环和回避 ● 描述 ACT 的 hexflex 模型如何帮助客户做出积极而有意义的行为改变。 ● 为 ACT 的六个核心流程中的每一个应用一项具体的以客户为中心的技能 ● 在每个核心流程中考虑神经发散大脑 ● 介绍神经发散大脑的其他考虑因素(例如完美主义和取悦他人),但这些是每个领域的完全独立的演示
摘要:在量子信息的所有领域中,满足适当的拟合权限的量子状态之间具有距离量度的距离至关重要。在这项工作中,我们从量子信息理论的角度出发了几何rényiDivergence(GRD)(GRD)的系统研究,也称为最大rényiDivergence。我们表明,这种差异及其扩展到渠道具有许多吸引人的结构特性,而其他量子差异不满意。例如,我们证明了链条规则不平等,这立即暗示了几何rényi差异的“摊销崩溃”,并解决了Berta等人的开放问题。[数学物理学中的字母110:2277–2336,2020,等式(55)]在量子通道区分区域中。作为应用程序,我们探索了各种通道容量问题,并根据几何rényi差异构建新的通道信息度量,并基于最大轴承的范围锐化了以前最著名的界限,同时仍然保持新的界限单,并有效地计算。研究了许多例子,几乎所有情况下的改进都是显而易见的。
收敛-发散 (CD) 喷嘴的优化对于整个航空航天工业的各种应用都至关重要 - 这些领域与 NASA 的使命密切相关。这项研究特别关注机器学习(特别是遗传算法)和计算流体动力学 (CFD) 软件在 CD 喷嘴几何优化问题中的应用。通过操纵三次样条连接的控制点的位置,可以创建一个开放的设计空间并驱动性能最佳的单个 CD 喷嘴产生通过欧拉方程计算的等熵流场 (Δ𝑆= 0.0𝐽𝑘𝑔𝐾)。本文产生的最佳情况对 Δ𝑆= 0.935𝐽𝑘𝑔𝐾 的局部最小几何形状进行了初始猜测。 395 万美元。该项目奠定的基础为进一步应用遗传算法优化 CD 喷嘴和其他亚音速/超音速流体组件打开了大门。
图2铃声肝炎病毒的基因组表征。(a)左,Ringtail Hepadnavirus(RTHBV)的基因组组织。右:上插入,前S1区域。人类乙型肝炎病毒(HBV)中的必要NTCP结合结构域被突出显示。点表示相同的氨基酸残基。右:较低的插入,比较翻译的前核心和N末端核心结构域。(b)铃声肝病毒(RTHV)的基因组组织。RTHV的结构蛋白颜色为绿色,而非结构性(NS)蛋白为蓝色。 与样本CO-09/924相比,RTHV样本CO-08/923之间的差异显示为黑线,而非同义替代品则显示为橙色三角形。 RTHV内部核糖体入口位点(IRES)和3'UTR的预测结构。 pk,pseudoknot。 (c)RTHBV与其他正腺病毒的成对核苷酸序列距离的比较。 序列距离使用SSE使用300的滑动窗口和80个核苷酸的步长计算。 LHB,大表面蛋白。 (d)RTHV与其他肝病病毒的成对氨基酸序列距离的比较。 序列距离使用SSE使用400个氨基酸的滑动窗口计算。RTHV的结构蛋白颜色为绿色,而非结构性(NS)蛋白为蓝色。与样本CO-09/924相比,RTHV样本CO-08/923之间的差异显示为黑线,而非同义替代品则显示为橙色三角形。RTHV内部核糖体入口位点(IRES)和3'UTR的预测结构。pk,pseudoknot。(c)RTHBV与其他正腺病毒的成对核苷酸序列距离的比较。序列距离使用SSE使用300的滑动窗口和80个核苷酸的步长计算。LHB,大表面蛋白。(d)RTHV与其他肝病病毒的成对氨基酸序列距离的比较。序列距离使用SSE使用400个氨基酸的滑动窗口计算。病毒缩写,名称(GenBank登录号):RTHBV,Ringtail Hepadnavirus(MZ393519); GSHV,松鼠肝炎病毒(K02715.1); LFBHBV,长指的蝙蝠乙型肝炎病毒(JX941466); RLBHBV,圆形蝙蝠乙型肝炎病毒(NC_024443); TMBHBV,制造帐篷蝙蝠乙型肝炎病毒(NC_024445); AGSHV,北极松鼠肝炎病毒(U29144); TFOHBV,太极肝炎B病毒(MK620908); DMHBV,家猫B病毒(MH307930); HBV,乙型肝炎病毒(AP007263); EQHBV,马乙型肝炎病毒(MT134279); HCV,肝病毒C(M62321);懒惰HV(MH844501); NRHV1,Hepacivivirus G(KJ950938);松鼠HV,肝病毒P(MG211815); RTHV,Ringtail Hepaciviviarus(MZ393518)
存在。既没有得出终点的研究(Luo等,2016),也没有其他长期暴露研究(参见例如tyl等,2008,Delclos等,2014年,在Clarity Project中进行的研究或流行病学研究报告了诸如炎症之类的不良根尖作用。对于此终点,不存在任何认可的不良结果途径。因此,BFR认为,新型的中间端点“脾脏中的Th17细胞百分比增加”似乎没有足够的合理性和确定为动物或人类不良健康结果的预测指标,并且认为它不适合衍生HBGV。沿着这些行,BFR指出,此端点的选择与EFSA使用的WHO/IPCS定义(WHO/IPCS,2009年)一致。bfr认为,动物模型中的中间端点“脾脏Th17细胞百分比增加”目前尚未足够合理地作为动物和人类不良健康结果的预测指标。因此,BFR认为选择该中间端点是一种范式转移:它导致考虑与某种物质暴露有关的人类健康风险的证据,以考虑可能的逆境,这可能最终在体内表现出来。bfr认为这与一般实践不符。此外,根据BFR,在风险评估过程的每个步骤中都使用了保守的最坏情况假设(例如bfr不同意EFSA进行的危害表征,因此不支持TDI和以下风险表征。选择关注的效果,整个证据的重量(祸)过程,毒理因子的选择以及量化剩余不确定性的方法,导致过度保守的HBGV。efsa强调,所使用的逆境的定义(WHO/IPCS,2009年)没有提及,也没有要求对效果的根尖性被视为不利。在设置HBGV时,EFSA考虑了与可能的根尖不良影响有关系的影响,因此可能在毒理学上相关。但是,这种影响不一定需要与一对一因果关系中的顶端终点相关。efsa包括使用中间端点,认为与不良结果具有明显的因果关系(AO)。efsa认为,通过根据应用方案加权总体证据体,可以确定中间效应与不利结果之间的联系,即使AO不一定在所考虑的研究的设计和范围内表达,并且不一定在单个(指南)研究中得到证实。意见中审查的证据(第3.1.3节)以及对BPA效应的越来越多的科学证据(请参阅对附件N中评论30的回答)清楚地表明,Th17细胞百分比的增量及其全白蛋白的增量表明,与免疫系统一致的疾病相关的动物均与抗症状相关的疾病的差异性增强,并涉及各种免疫力的疾病,并涉及无效的疾病,并涉及侵蚀性,并涉及无效的疾病。人类(例如牛皮癣,糖尿病,多发性硬化症,嗜中性哮喘等)。这种证据也存在于几种动物中