1949 年,戈莱(Golay)[1-4]发现了两种重要的纠错码。一种是二进制码,现用符号 1[24,12,8] 表示,由 2 12 = 4096 个 24 个字符(每个字符为 0 或 1)的码字组成,码字之间的最小距离为 2/8;另一种是三元码,用符号 [12,6,6] 表示,由 3 6 = 729 个 12 个字符(每个字符为 0、1 或 2)的码字组成,码字之间的最小距离为 6。3 在被发现后的几十年里,这些代码推动了编码理论和数学的重大进步。在编码理论中,戈莱码是唯一在有限域上可以纠正码字中多个错误的完美代码。 4 在数学中,二进制 Golay 码导致了 24 维 Leech 格子的发现 [5],这种格子提供了该维度上最密集的全同球体堆积 [6](已知的其他此类堆积的唯一维度是 8)。此外,在群论中,正如 Preskill [4] 所说,Golay 码启动了一系列事件,这些事件导致了上个世纪后期对有限群(特别是“零散”群)的完整分类。量子计算的出现以及由此产生的对量子纠错的兴趣,重新引起了人们对古典密码学的兴趣,因为人们意识到后者的许多结果可以改编并用于
空降风险将BTV和EHDV从近乎大陆引入大不列颠。时间段:04至2024年9月10日。本报告描述了蓝肠病毒(BTV)或epizootic出血性疾病病毒(EHDV)进入的回顾性风险 - 感染了前一周进入近乎大陆的大不列颠的米德氏病。它不会试图预测病毒进入的未来风险或比上述时间段提前考虑历史风险。我们估计上一周内从近乎大陆向GB引入感染性BTV感染的MIDGE的总体风险是“中等”,这意味着在上周,传染性BTV感染的Midges很可能被吹入GB中。我们认为,在上周,在法国,比利时,荷兰,德国和丹麦消息来源中,有不可忽略的风险被侵入感染性BTV感染的MIDGE(这意味着无法降低风险)。西南地区和东南地区(附录C)的县被确定为有可能从法国来源入侵的风险(中等风险)。我们对法国消息来源风险的估计既考虑了入侵BTV-3的潜力和BTV-8的入侵 - 后者由于对法国高风险地区的Midges当前感染状况和易感牲畜的了解有限,因此后者仍然不确定。目前在法国BTV-3的限制性报告的分布意味着,东南地区的县在上一周内最有可能入侵这种病毒菌株。东英吉利和东南部的县被认为有可能受到比利时来源入侵的潜在风险(低风险)。 东英吉利,东南部和东北地区的县被认为有可能受到荷兰来源入侵的风险(中等风险)。 东英吉利和东北地区的县被认为有可能从德国来源入侵的风险(低风险)。 东北地区的县被确定为丹麦来源的入侵风险(非常低的风险)。 在最近在挪威发现BTV-3的发现后,我们还考虑了向矢量侵袭GB的潜在风险。 我们不考虑上周适合此类入侵的条件,而是会继续监视情况。 我们估计,在过去一周内,从近乎大陆向GB引入感染性EHDV的MIDGE的总体风险是“可以忽略的”,这意味着风险足够低,不可提高考虑。 我们还考虑了英格兰南部和东部的沿海和近型地区的矢量活性和温度(GB的地区最受空气传播病毒入侵的风险最高的地区),以估计如果发生了乱伦,则在这些地区内BTV的潜在风险。东英吉利和东南部的县被认为有可能受到比利时来源入侵的潜在风险(低风险)。东英吉利,东南部和东北地区的县被认为有可能受到荷兰来源入侵的风险(中等风险)。 东英吉利和东北地区的县被认为有可能从德国来源入侵的风险(低风险)。 东北地区的县被确定为丹麦来源的入侵风险(非常低的风险)。 在最近在挪威发现BTV-3的发现后,我们还考虑了向矢量侵袭GB的潜在风险。 我们不考虑上周适合此类入侵的条件,而是会继续监视情况。 我们估计,在过去一周内,从近乎大陆向GB引入感染性EHDV的MIDGE的总体风险是“可以忽略的”,这意味着风险足够低,不可提高考虑。 我们还考虑了英格兰南部和东部的沿海和近型地区的矢量活性和温度(GB的地区最受空气传播病毒入侵的风险最高的地区),以估计如果发生了乱伦,则在这些地区内BTV的潜在风险。东英吉利,东南部和东北地区的县被认为有可能受到荷兰来源入侵的风险(中等风险)。东英吉利和东北地区的县被认为有可能从德国来源入侵的风险(低风险)。 东北地区的县被确定为丹麦来源的入侵风险(非常低的风险)。 在最近在挪威发现BTV-3的发现后,我们还考虑了向矢量侵袭GB的潜在风险。 我们不考虑上周适合此类入侵的条件,而是会继续监视情况。 我们估计,在过去一周内,从近乎大陆向GB引入感染性EHDV的MIDGE的总体风险是“可以忽略的”,这意味着风险足够低,不可提高考虑。 我们还考虑了英格兰南部和东部的沿海和近型地区的矢量活性和温度(GB的地区最受空气传播病毒入侵的风险最高的地区),以估计如果发生了乱伦,则在这些地区内BTV的潜在风险。东英吉利和东北地区的县被认为有可能从德国来源入侵的风险(低风险)。东北地区的县被确定为丹麦来源的入侵风险(非常低的风险)。在最近在挪威发现BTV-3的发现后,我们还考虑了向矢量侵袭GB的潜在风险。我们不考虑上周适合此类入侵的条件,而是会继续监视情况。我们估计,在过去一周内,从近乎大陆向GB引入感染性EHDV的MIDGE的总体风险是“可以忽略的”,这意味着风险足够低,不可提高考虑。我们还考虑了英格兰南部和东部的沿海和近型地区的矢量活性和温度(GB的地区最受空气传播病毒入侵的风险最高的地区),以估计如果发生了乱伦,则在这些地区内BTV的潜在风险。我们估计,如果发生入侵的情况在过去的两周中,BTV在过去的两个星期中的传播风险在东南和东安格利亚“非常高”(这几乎肯定是适合在这些地区的传播的情况);西南地区的“高”(这意味着条件很可能适合这些地区的传播);和东北地区的“媒介”(这意味着温度可能适合在这些地区的传播)。
线粒体是细胞最佳功能的关键细胞器。在许多功能中,它们通过自己的蛋白质抑制剂机制维持蛋白质稳态,涉及蛋白酶和伴侣,这些蛋白酶和伴侣调节线粒体内部的蛋白质进口和折叠。在2000年代初期,哺乳动物细胞首先描述了线粒体展开的蛋白质反应(UPR MT)。通过线粒体基质中展开/错误折叠蛋白的积累积累来激活这种应力反应,这导致信号向细胞核传播以增加蛋白酶和伴侣的表达,以解决异常的线粒体蛋白质负载。在发现后,在其他不同复杂性的其他生物体中也描述了这种逆行信号通路,这表明它是一种保守的应激反应。尽管生物体之间存在一些特定的差异,但这种应力反应的机制主要相似,涉及从线粒体传播从线粒体传播到核的核,从而诱导染色质重塑以允许特异性转录因子与伴侣和蛋白酶的启动子和蛋白酶的启动子的结合。在过去的十年中,已经描述了可能与UPR MT调节有关的蛋白质和信号通路,包括Wnt信号通路。此MinireView旨在总结有关UPR MT机制及其调节的知识,该机理在哺乳动物和秀丽隐杆线虫中均具有特定的规定。
摘要量子系统的基础状态的快速而忠实的准备是在基于量子的技术领域中的多个应用程序的具有挑战性但至关重要的任务。的消毒将允许的最大时间窗口限制为实验,以忠实地达到此类所需的状态。这在具有量子相变的系统中特别重要,其中消失的能量差距挑战了绝热的基态制备。我们表明,由在两个不同的外部可调参数下的时间演化组成的BANG-BANG协议允许在进化时间中进行高实现基态制备,而不必应用标准最佳控制技术所需的时间,例如切碎 - 常发送量子量子基量子量子量子。此外,由于它们的变量数量减少,此类BANG -BANG协议非常适合优化任务,从而降低了其他最佳控制协议的高计算成本。我们通过两个范式模型(即Landau – Zener和Lipkin – Meshkov – Glick模型)对这种方法进行基准测试。非常重要的是,我们发现后一个模型的关键基态,即其在临界点处的基态可以在总进化时间内以高填充率制备,该缩放比消失的能量差距慢。
重要的是,如果没有操作孤星(OLS),TX SB 4-88(4)将不存在。2021年3月,雅培州长创建了OLS,这是一项由州领导的移民执法计划,将移民蚂蚁定为犯罪,并得到了数十亿美元的州资金的支持。从那以后,德克萨斯人通过制造有关在德克萨斯/墨西哥边境的入侵的叙述来观看激进的钻机越来越多地剥夺了有色人种和有色人种。州长雅培的入侵言论导致了2023年的立法会议,该会议通过了大量的反移民立法。在第四届特别立法会议上,得克萨斯州立法机关通过造成三种新罪行,随着TX SB 4-88(4)的通过而编纂和扩展了OLS:1)非法进入德克萨斯州,2)非法进入德克萨斯州,而3)拒绝遵守命令返回的命令。TX SB 4-88(4)授权并指示德克萨斯和平官员逮捕涉嫌从外国进入港口以外的德克萨斯州的非公民,或在得克萨斯州在得克萨斯州在得克萨斯州被发现后在得克萨斯州被拒绝接纳,被拒绝承认,被驱逐,被驱逐出境,被驱逐,被撤职,或被排除在美国后,或以杰出的命令命令,或将其除外,或者被判处杰出的命令,或者被排除在外的命令,或者被排除在外命令或不符合命令。此外,法律要求国家法官签发命令以返回墨西哥,并使拒绝遵守该命令的重罪。
初步观察记录于 19 世纪初欧洲工业革命期间。在此期间,多条铁路、重型机车和发动机在经过长时间运行后意外发生故障。1829 年,W.A.S. Albert 在对铁链进行循环载荷试验时发现了这种故障 [1,2]。随后,在 1837 年,他在一本杂志上报道了循环载荷与金属寿命之间的关系。根据这一观察,铸铁车轴设计师 J.V. Poncelet 使用了“fatigare”一词,英国的 F. Brainthwaite 于 1854 年将其命名为疲劳 [3,4]。1842 年,法国凡尔赛附近发生了最严重的铁路灾难之一。途中几台机车的车轴断裂。经 W.J.M. 检查后,英国铁路的 Rankine 发现后,证实车轴发生了脆性断裂 [2]。根据这一观察,August Wöhler 在机车车轴失效方面进行了一些开创性的工作,为疲劳理解奠定了基础。Wöhler 绘制了克虏伯车轴钢数据与应力 (S) 和失效循环数 (N) 的关系图。该图后来被称为 S-N 图 [5,6]。S-N 图可用于预测金属的疲劳寿命和持久极限,即应力的极限阈值,低于该阈值,工程材料将表现出很高或无限高的疲劳寿命。因此,A. Wöhler 被认为是现代疲劳技术的鼻祖 [7]。1886 年,J. Bauschinger 发表了第一篇
尽管有越来越多的证据表明,来自背侧视觉通路的输入对于腹侧通路中的物体 29 过程至关重要,但背侧皮质对这些 30 过程的具体功能贡献仍知之甚少。在这里,我们假设背侧皮质计算物体各部分之间的 31 空间关系(这是形成整体形状感知的关键过程)32,并将此信息传输到腹侧通路以支持物体分类。使用 fMRI 33 对人类参与者(女性和男性)进行研究,我们发现顶内沟 34 (IPS) 中的区域选择性地参与计算以物体为中心的部分关系。这些区域 35 表现出与腹侧皮质的任务依赖性功能和有效连接,36 与其他背部区域不同,例如代表异中心关系、3D 形状和 37 工具的区域。在随后的实验中,我们发现后 IPS 的多变量反应(根据部分关系定义)可用于解码与腹侧物体区域相当的物体类别。此外,中介和多变量有效连接分析进一步表明,IPS 可能解释了腹侧通路中部分关系的表征。总之,我们的结果突出了背侧视觉通路对物体识别的特定贡献。我们认为背侧皮层是腹侧通路的重要输入来源,可能支持根据整体形状对物体进行分类的能力。
太阳能和风能等可变可再生能源的增长正在增加气候不确定性对能源系统规划的影响。理想情况下,解决这个问题需要至少跨越几十年的高分辨率时间序列。然而,解决此类数据集上的容量扩展规划模型通常需要太多的计算时间或内存。为了降低计算成本,用户通常使用时间序列聚合将需求和天气时间序列压缩为较少的时间步长。方法通常是先验的,仅使用有关输入时间序列的信息。最近的研究强调了这种方法的局限性,因为减少输入时间序列的统计误差指标通常不会导致更准确的模型输出。此外,许多聚合方案不适用于具有存储的模型,因为它们会扭曲时间顺序。在本文中,我们为具有存储的模型引入了后验时间序列聚合方案。我们的方法适应底层能源系统模型;即使具有相同的时间序列输入,聚合在具有不同技术或拓扑的系统中也可能有所不同。此外,它们保留了时间顺序,因此允许对存储技术进行建模。我们研究了许多方法。我们发现后验方法比先验方法效果更好,主要是通过系统地识别和保存相关的极端事件。我们希望这些工具能让长期需求和天气时间序列在容量扩展规划研究中更易于管理。我们公开提供我们的模型、数据和代码。
多重基因组编辑 (MGE) 技术是最近开发的多功能生物工程工具,用于高精度修改基因组中两个或多个特定 DNA 基因座。这些基因组编辑工具大大提高了在多个核苷酸水平上向目标基因组引入所需变化的可行性。特别是,基于成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) [CRISPR/Cas] 系统的 MGE 工具允许同时在一个或多个基因的多个基因座上精确地产生直接突变。MGE 正在增强植物分子生物学领域,并为彻底改变现代作物育种方法提供了能力,因为使用之前的基因组编辑工具(例如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN))几乎不可能在单碱基对水平上如此精确地编辑基因组。最近,研究人员不仅开始使用 MGE 工具来推进某些植物科学领域的基因组编辑应用,而且还试图解释和回答与植物生物学相关的基本问题。在这篇评论中,我们讨论了目前在开发和利用 MGE 工具方面取得的进展,重点介绍了 CRISPR/Cas9 发现后植物生物学的改进。此外,还介绍了涉及 CRISPR/Cas 应用以编辑多个基因座或基因的最新进展。最后,对 MGE 技术在推进作物改良计划方面的优势和重要性进行了深入分析。
声明披露有关高风险系统的指定信息;呢提供给高风险系统信息和文档的部署,以完成对高风险系统的影响评估所需的;呢制作公开陈述,总结了开发人员已经开发或有意,实质上修改的高风险系统类型,目前可以向部署者使用,以及开发人员如何管理算法歧视的任何已知或合理可预见的风险,这些风险可能是由开发或有意修改和实质性修改的这些高风险系统所产生的;和 !在发现或收到部署可信报告后的90天内,向高危系统的总检察长和已知的高风险系统披露,高风险系统已导致或合理造成的。该法案还要求高风险系统的部署者使用合理的护理来避免在高风险系统中算法歧视。有一个可反驳的假设,即如果部署者遵守法案中的规定规定,则部署者使用合理的护理,包括:!为高风险系统实施风险管理政策和计划;呢完成对高风险系统的影响评估;呢如果高危系统做出有关消费者的结果决定,请通知消费者指定项目;呢遵守联邦和州版权法的政策;和进行公开可用的声明总结了部署目前部署的高风险系统的类型,以及部署者如何管理任何已知或合理可预见的算法歧视风险。和 !在发现后的90天内,向总检察长发现算法歧视的发现,高风险系统已导致或合理地造成的算法歧视。需要通用人工智能模型(通用模型)的开发人员来为通用模型创建和维护指定的文档,包括:!