病史和检查可以可靠地识别吞咽困难的位置和机制,然后进行有针对性的研究以及适当的转诊途径。当怀疑有阻塞性口咽吞咽困难时,应根据需要将转介到鼻腔内镜和活检中,以转介到耳朵 - 诺斯 - throat(ENT)专家。怀疑口咽恶性肿瘤的患者也受益于颈部和胸部的计算机断层扫描成像,以评估原发性病变和相关的淋巴结肿大。孤立的扩大淋巴结需要超声引导的活检才能进一步进行组织学评估。任何怀疑患有食道吞咽困难的患者都必须被转诊给胃肠病医生,以进行上胃肠道内窥镜检查(UGIE),以排除食道恶性肿瘤,并根据需要进行活检。27 UGIE还将评估
1. Gawara Baya 风电场(400 MW 风电、100MW 电池) 2. Mount Fox 能源公园(290 MW 风电、300 MW 电池) 3. Karma 风电场(600 MW) 4. Yabulu 太阳能发电场(90 MW 太阳能、200 MW 电池) 5. Freedom Energy One 太阳能发电场(250 MW) 6. Sunshine State 太阳能发电场(110 MW) 7. Bluewater 太阳能发电场(102 MW) 8. Springvale 可再生能源项目(400 MW 太阳能) 9. Majors Creek 太阳能项目(200 MW) 10. Haughton 太阳能发电场第 2 阶段(300 MW) 11. Burdekin 太阳能发电场(108 MW) 12. Koberinga 太阳能发电场(55 MW)
摘要 - 这篇文章研究了峰值电场强度(PEFIS)和允许的最大激发电压(MEVA)电感链路无线电源传递(WPT)到嵌入人体中的医疗植入物中。在环形,六边形和圆形的几何形状中的分段和未段的天线,宽度为2、1和0.2 mm。广泛的模拟表明,与未分段的天线相比,分割的天线可以显着减少PEFI并增加特定吸收率(SAR)约束内的MEVA。通过分割,PEFI的降低在更高的工作频率下更有效。宽度较小的天线将辐射较小的PEFI。具有相同的天线宽度,六边形天线辐射最大的PEFI,其后是其圆形和环形的对应物。在研究下的所有天线中,宽度为2 mm的未段的六角形天线辐射为最大的PEFI,而宽度为0.2 mm的分段环形天线辐射最小的PEFI。考虑到PEFI和MEVA,首选环形几何形状中的天线,并且应将分割应用于六边形天线。当天线宽度大于1 mm时,建议天线的分割。
图 2 . a) 新鲜状态下 S-1 SAM 的 AFM 形貌图像。b) 对 SAM S-1 施加 0.6 V 电化学电位 1 分钟后获得的 SAM S-2 的 AFM 形貌图像。c) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 的 AFM 形貌图像。d) 新鲜制备的 SAM S-1 上水滴的静态图像。e) 对 SAM S-1 施加 +0.6 V 电化学电位 1 分钟后获得的 SAM S-2 上水滴的静态图像。f) 对 SAM S-1 施加 +1.5 V 电化学电位 10 分钟后获得的 SAM S-2 上水滴的静态图像。 S-1 SAM 的 XPS 高分辨率 Si 2p 光谱(g)新鲜制备、(h)在 +0.6 V 下氧化,和(i)在 + 1.5 V 下氧化。
绘制 La Bajada 收缩和 Cochiti Pueblo 地区电阻率随深度的变化图;这些电阻率变化与岩石或沉积物类型的变化有关,而这些变化又会影响研究区域的含水层。在 Cerros del Rio 火山场东部,Cerrillos 隆起北部边界的位置和几何形状受到我们电磁勘测结果的限制。该边界定义了 La Bajada 收缩的东南范围,与 Rio Grande 水力相连的地下水从 Española 盆地流入 Santo Domingo 盆地时流经该边界。该地区的电磁勘测还发现了大部分隐蔽的 Tetilla 断层带;它似乎形成了东倾导电 Mancos 页岩块的西部边界。在 La Bajada 收缩的中北部,大片低电阻率区域与 Santa Fe 群上部盆地填充沉积物中的粉砂或粘土湖泊单元相吻合。在收缩的中央部分,较高的电阻率部分与祖先的里奥格兰德轴向砾石沉积物相对应。在拉巴哈达收缩的西侧,我们的电磁勘测结果对基底的相对位置以及收缩边界帕哈里托断层带两侧的古生代、中生代和第三纪沉积岩的厚度提供了约束。
已经完成了景观特征和视觉影响评估,以考虑该项目的潜在视觉影响。视觉影响很可能会在项目的10公里半径内经历,其影响范围从现有视图没有变化到轻微的不利影响,这意味着在现有视图中“几乎看不见的恶化”。在10 km半径内,只有看到传输线的瞥见可见。在半径10公里以外,该项目预计不会对更广阔的景观产生明显的影响。的措施,例如使用与周围环境兼容的材料和颜色,以及土地利用和屏幕种植的措施,以减轻视觉影响。
已经完成了景观特征和视觉影响评估,以考虑该项目的潜在视觉影响。视觉影响很可能会在项目的10公里半径内经历,其影响范围从现有视图没有变化到轻微的不利影响,这意味着在现有视图中“几乎看不见的恶化”。在10 km半径内,只有看到传输线的瞥见可见。在半径10公里以外,该项目预计不会对更广阔的景观产生明显的影响。的措施,例如使用与周围环境兼容的材料和颜色,以及土地利用和屏幕种植的措施,以减轻视觉影响。
众所周知,维持特定记忆的确切神经元(神经集合)会随着每次试验而变化。这引出了一个问题:面对这种表征漂移,大脑如何实现稳定性。在这里,我们证明这种稳定性出现在神经活动产生的电场水平上。我们表明,电场携带有关工作记忆内容的信息。反过来,电场可以充当“护栏”,将高维变量神经活动引导到稳定的低维路线上。我们获得了与每个记忆相关的潜在空间。然后,我们通过将潜在空间映射到不同的皮质斑块(组成神经集合)并重建斑块之间的信息流来确认电场的稳定性。稳定的电场可以允许潜在状态在大脑区域之间转移,这与现代印迹理论一致。
隔离器是电子设备,可向控制器传输数字信号,同时还提供电流隔离,以提供用户界面和低压电路的安全电压水平。它们具有广泛的应用,包括工业,汽车,消费者和医疗电子产品,每个应用都需要特定的最低隔离水平。隔离的基本形式由光学,电容和磁耦合提供[1]。隔离器必须通过几个监管标准才能将其发布到市场。这些包括可靠性测试,例如承受电压和电压电压以及高压耐力(HVE)。承受电压和电涌电压是相对较快的持续时间测试,但是,HVE可能需要几个月到几年才能完成[2]。目前的工作基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了处理效果对隔离器中使用的各种材料及其在电崩溃之前的行为的影响。聚酰亚胺(PI)是
▪名称姓:UTKUKöse / Utku Kose▪国籍:土耳其▪出生日期:26.03.1985▪性别:男性▪地址:SüleymanDemirelUniversity,工程和NAT。Sci。,Dept.of Computer Engineering, West Campus, 32260, Isparta / Turkey ▪ Telephone : (+90) (246) 211 12 69 ▪ Fax : (+90) (246) 237 08 59 ▪ Mobile : (+90) 532 590 83 26 ▪ E-Mail (Personal) : utkukose@gmail.com ▪ E-Mail (Academic) : utkukose@sdu.edu.tr/utku.kose@und.edu/utko.kose@ieee.org/utkukose@acm.org▪个人网站:https://www.utkukose.com▪机构网站:机构网站: https://w3.sdu.edu.tr/personel/09143/dr-ogr-uyesies-utku-kose▪Yök研究人员ID:23806▪•orcid ID:0000-0002-9652-6415 (链接):