摘要 — 典型的 4 型风力涡轮机使用直流链路逆变器将电机连接到电网,从而为 N 涡轮机农场的每个涡轮机提供 2 个功率转换器步骤,并将产生 2 N 个功率转换器。这项工作提出了一种用于 4 型风电场的直流总线收集系统,该系统减少了所需的转换器总数,并最大限度地降低了储能系统 (ESS) 要求。这种方法要求每个涡轮机有一个转换步骤,ESS 需要一个转换器和一个电网耦合转换器,这导致风电场的转换器数量为 N +2,并可能节省大量成本。然而,直流收集系统的权衡之一是需要增加能量存储以过滤功率变化并提高电网的电能质量。本文介绍了一种有效的直流总线收集系统设计的新方法。风电场的直流收集在涡轮机之间实施功率相位控制方法,该方法可以过滤变化并提高电能质量,同时最大限度地减少对增加储能系统硬件的需求并提高电能质量。相位控制利用了新颖的功率包网络概念和非线性功率流控制设计技术,可确保稳定和增强的动态性能。本文介绍了直流收集和相位控制的理论设计。为了证明这种方法的有效性,提供了详细的数值模拟示例。
案例 2 -a (C 2 a) - 在 C1 中包含最低稳定发电量 案例 2 -b (C 2 b) - 在 C 2 a 中包含爬坡率 案例 2 -c (C 2 c) - 在 C 2 b 中包含启动和关闭成本 案例 2 -d (C 2 d) - 在 C 2 c 中包含部分负荷效率
摘要 — 风电弃风 (WPC) 的发生是因为风力发电 (WPG) 与负荷之间不相关,而且 WPG 每小时内变化很快。最近,能源存储技术的进步促进了大容量能源存储单元 (ESU) 的使用,以提供应对 WPG 每小时内快速变化所需的提升。为了最大限度地降低每小时内 WPC 的概率,本文提出了一个通用的基于连续时间风险的模型,用于日前机组组合 (UC) 问题中发电单元和大容量 ESU 的每小时内调度。因此,伯恩斯坦多项式用于对具有 ESU 约束的基于连续时间风险的 UC 问题进行建模。此外,所提出的基于连续时间风险的模型可确保发电机组和 ESU 跟踪 WPG 每小时内的变化,同时在每个每小时内平衡负荷和发电量。最后,通过模拟 IEEE 24 节点可靠性和修改后的 IEEE 118 节点测试系统证明了所提模型的性能。
本文提出了一种功率控制方法,以提高采用可再生能源的小型电网的稳定性。在岛屿等孤立的小型电网中,柴油发电厂是主要电源,由于化石燃料价格高昂,对环境造成负担,运行成本高昂。因此,扩大风电等可再生能源的安装势在必行。然而,这种波动的能源会损害小型电网的电能质量,此外,小型电网中的传统发电厂通常无法稳定具有这种波动能源的电网系统。本研究建议在柴油发电厂安装变速双馈感应发电机 (VS-DFIG) 来代替传统的定速同步发电机 (FS-SG),因为利用 VS-DFIG 的惯性能量可以快速控制小型电网的功率平衡。此外,还考虑利用电池储能系统(BESS)来协同辅助VS-DFIG控制。通过采用所提方法进行的仿真分析,验证了VS-DFIG的快速功率控制与传统FS-SG相比,可以有效降低可再生能源引起的频率波动,并且利用BESS可以获得进一步的控制能力。此外,还可以增强小规模电网在电网故障期间的暂态稳定性。
3.6 燃油系统,HFO 操作 ............................................................................................................. 34 3.6.1 柴油发动机残余燃料的要求(如加注) ................................................................................ 34 3.6.2 粘度/温度图 ............................................................................................................. 35 3.6.3 系统图 – 重质燃油操作 ............................................................................................. 36 3.6.4 HFO 系统组件 ............................................................................................................. 37 a) 细过滤器(已安装)HF1 ............................................................................................................. 37 b) 滤网 HF2 ............................................................................................................................. 37 c) 自清洁过滤器 HF4 ............................................................................................................. 38 d) 粘度计 HR2 ............................................................................................................................. 38 e) 压力泵 HP1/HP2 ............................................................................................................. 38 f) 循环泵 HP3/HP4 ............................................................................................................. 38 g)压力调节阀HR1................................................................
空气断路器、塑壳断路器和微型断路器用于保护发电机 ABB 可提供种类繁多的空气断路器 (Emax)、塑壳断路器 (Tmax)、模块化断路器 (System proM compact),可满足各种工厂工程需求。Emax 和 Tmax 断路器提供符合 IEC 和 UL 标准的版本,其特点是模块化和紧凑性,尺寸/性能比高。它们可配备适用于发电机、电动机和变压器的保护装置。特别是,Tmax 断路器可配备不仅适合发电机,而且特定于发电机的保护装置(例如 Ekip-G-LS/I 版本)。目前,Emax 和 Tmax 是世界上唯一提供无线通信的断路器,使用蓝牙技术,允许从 PC 或掌上电脑进行配置和诊断。具体来说,下面列出的设备可用于发电机组上的应用:
© 2007 | Cummins Power Generation Inc. | 保留所有权利 | 规格如有更改,恕不另行通知 | Cummins Power Generation 和 Cummins 是 Cummins Inc. 的注册商标。PowerCommand、AmpSentry、InPower 和“我们的能源为您服务。”是 Cummins Power Generation 的商标。其他公司、产品或服务名称可能是其他公司的商标或服务标志。SS11-CPGK-RevA (9/07)。
一般危险 • 出于安全原因,制造商建议由授权服务经销商或其他熟悉适用规范、标准和法规的合格电工或安装技术人员安装和维修本设备。操作员也必须遵守所有此类规范、标准和法规。 • 操作本设备时,请始终保持警惕。切勿在身体或精神疲劳时操作设备。 • 定期检查设备,并及时修理或更换所有磨损、损坏或有缺陷的部件,且只能使用工厂认可的部件。 • 在对发电机或任何相关设备进行任何维护之前,请断开发电机的电池电缆并取下面板保险丝,以防止意外启动。首先断开电缆与电池柱(以负极、NEG 或 (-) 表示)的连接。最后重新连接该电缆。
一般危险 • 出于安全原因,制造商建议由授权服务经销商或其他熟悉适用规范、标准和法规的合格电工或安装技术人员安装和维修本设备。操作员还必须遵守所有此类规范、标准和法规。• 操作本设备时,请始终保持警惕。切勿在身体或精神疲劳时操作设备。• 定期检查设备,并及时修理或更换所有磨损、损坏或有缺陷的部件,仅使用工厂认可的部件。• 在对发电机或任何相关设备进行任何维护之前,请断开发电机的电池电缆并取下面板保险丝,以防止意外启动。首先断开电池柱上的电缆(以负极、NEG 或 (-) 表示)。最后重新连接该电缆。