摘要 能源部门对美国的经济活力至关重要,但近几十年来,无论是传统能源资源还是日益增长的清洁能源经济,能源部门都经历了重大变化。同时,能源部门的脱碳与其他宏观经济转型(如自动化、数字化和全球化)同时发生。本白皮书将在这一更广泛背景下探讨美国经济的能源与制造业部门之间的密切关系。从历史上看,能源成本和可靠性在制造业竞争力中发挥了关键作用,并巩固了制造业在中西部和阿巴拉契亚地区的定位。此外,能源部门传统上为发电设备、能源基础设施产品和燃料生产设备的制成品提供了巨大的市场。本文将探讨能源生产和能源政策的脱碳如何影响制造商,特别是能源密集型、贸易密集型行业,提供机遇的同时也带来了挑战,如果不加以解决,这些挑战将使它们更容易受到国际竞争的影响。最后,本文将提出建议,以最佳政策环境来刺激美国新技术的制造。所有这些都将通过两个案例研究来说明,一个是关于 48c 先进能源制造业税收抵免的表现,另一个是关于 2012 年 CAFE 标准对机动车行业的影响。
法定豁免?否如果是,请列出PRC和/或CCR部分编号,并用逗号分隔。如果否,请输入“无”,然后转到下一个问题。PRC部分编号:无CCR部分编号:无分类豁免?是,如果是,请列出CCR部分编号,并用逗号分隔。如果否,请输入“无”,然后转到下一个问题。CCR部分编号:CAL。 代码regs。,tit。 14,§15301;加州 代码regs。,tit。 14,§15303;加州 代码regs。,tit。 14,§15304;加州 代码regs。,tit。 14,§15306;常识豁免? 14 CCR 15061(b)(3)不,如果是,请解释上述部分豁免协议的原因。 如果否,请输入“不适用”,然后转到下一节。 加利福尼亚大学圣地亚哥分校,物理和社区规划系,于2023年9月20日发布了CEQA豁免通知。 豁免是基于14 C.C.R. §15301,现有设施。 该设备将放置在先前由2.8 MW熔融碳酸盐燃料电池发电厂占用的现有空缺的混凝土基础上,该植物于2023年退役。 先前允许该站点用于主要的电气基础设施和发电设备,并提议的热化学能源存储(TCES)系统以及用于电力到电力储存的涡轮增压器加热的涡轮生成器,将重新使用该大学的一些电气基础设施,以访问大学12 kV电气分配系统。CCR部分编号:CAL。代码regs。,tit。14,§15301;加州代码regs。,tit。14,§15303;加州代码regs。,tit。14,§15304;加州代码regs。,tit。14,§15306;常识豁免?14 CCR 15061(b)(3)不,如果是,请解释上述部分豁免协议的原因。如果否,请输入“不适用”,然后转到下一节。加利福尼亚大学圣地亚哥分校,物理和社区规划系,于2023年9月20日发布了CEQA豁免通知。豁免是基于14 C.C.R.§15301,现有设施。该设备将放置在先前由2.8 MW熔融碳酸盐燃料电池发电厂占用的现有空缺的混凝土基础上,该植物于2023年退役。先前允许该站点用于主要的电气基础设施和发电设备,并提议的热化学能源存储(TCES)系统以及用于电力到电力储存的涡轮增压器加热的涡轮生成器,将重新使用该大学的一些电气基础设施,以访问大学12 kV电气分配系统。此外,与以前的发电机相关的100吨吸附冷却器保持现场功能齐全且允许,并将重新用于提议的热量储能系统操作。此外,第15303节,小结构适用:该项目包括安装小结构。组合的热量和功率(CHP)系统将包括10 MWH-Th-Th-Th-Th-Th-Thin(3 MWH-E)热化学能量存储容器与微涡轮机配对,可用于100 kW-E的峰值电输出量,并在加利福尼亚大学圣地亚哥大学(UCSD)医疗校区的加利福尼亚大学的24小时存储空间。
平衡可再生能源运行成本与污染物排放的混合动态经济环境调度模型:一种新的改进蜉蝣算法摘要本研究提出一种结合火电机组、风电机组、光伏和储能装置的混合动态经济环境调度模型,在稳定可再生能源出力的前提下,实现运行成本与污染物排放的平衡。随着越来越多的可再生能源接入电网,大多数研究都针对经济和环境问题进行优化调度,而忽略了可再生能源出力的稳定性。针对可再生能源出力不稳定的问题,提出一种风光稳定出力策略,并利用储能装置合理控制可再生能源调度功率。改进适应度函数,提出一种采用混沌初始化、惯性权重和变异策略的改进蜉蝣(IMA)算法来寻优,并在两个不同配置的系统上验证了算法的性能。此外,还考虑了功率平衡、各发电设备出力、储能装置能量等约束。结果表明:IMA算法的运行成本分别比MA、MFO和PSO算法降低4.12%、13.21%和15.14%,采用IMA算法的模型能有效实现经济与环境的平衡并获得稳定的可再生能源出力。该研究为多种可再生能源接入条件下电网的稳定运行提供了有益参考。
摘要:本文介绍了一系列从海洋环境中产生可再生能源的设备,近年来,这些设备引起了越来越多的关注。特别是,本文描述了主要类型的浮动风力发电机和海流涡轮机。随着时间的推移,其中一些浮动发电机已经发展成各种混合模式,将不同的发电设备集成到同一系统中,如风力涡轮机、海流涡轮机、波浪能转换器等,目的是增加其发电能力并优化浮动系统的投资。然而,这种混合在某些情况下提供了解决控制系统结构稳定性问题的机会。自浮动风力涡轮机设计初期以来,这种稳定性增强一直被视为一项重大挑战。为了实现这一目标,本文提出了一种具体的解决方案,包括一个浮动混合系统,该系统由风力发电子系统和带有两个海流涡轮机的发电子系统组成。该建议允许开发一个集成控制系统,该系统同时处理系统的结构稳定性和发电能力的优化。此外,还强调了与实现经济可行性目标有关的其他要求,考虑到系统在特别恶劣的海洋环境中的可靠性和可用性,在这种环境中维护操作特别昂贵。为此,提出了一种智能集成监督、诊断和预测性维护任务的模型。
公用事业公司和电力合作社拥有或运营所有资产——从发电设备、输电设施、配电设施到客户电表和客户服务系统——以向实体指定服务区域内的最终用户提供电力服务。垂直整合的公用事业公司、市政公用事业公司和电力合作社也各自拥有向各自服务区域内的客户出售电力的专有权。1995 年,作为迈向今天的 ERCOT 市场的第一步,立法机构开放了 ERCOT 的批发电力市场,并要求所有拥有输电线路的实体提供开放、非歧视性的批发电力传输渠道。此后,在 1999 年,立法机构重组了德克萨斯州大部分电力市场,要求大多数投资者拥有的公用事业公司分拆为不同的实体,这些实体将仅提供发电、输电和/或配电或零售服务。这通常被称为“拆分”。这种重组导致投资者拥有的输配电公用事业继续受到监管,并在向零售客户销售电力方面引入了竞争。零售竞争使前垂直整合公用事业的零售客户能够选择从谁那里购买电力。电力合作社和市政公用事业也被授予决定是否在其服务区域提供客户选择的能力。几乎所有电力合作社和市政公用事业都选择保留其在其区域提供零售服务的专有权,它们通常被称为“非选择加入实体”或 NOIE。
华盛顿热能可再生能源信用额度(修订草案,2020 年 4 月 16 日)194-40-xxx 权力和目的。本章依据 RCW 19.405.100 授予的权力,该权力要求部门制定规则,用于衡量和跟踪用于遵守 RCW 19.405.040 的热能可再生能源信用额度。194-40-xxx 定义。“生物质能”包括:(i) 制浆和木材制造过程的有机副产品;(ii) 动物粪便;(iii) 木材固体有机燃料;(iv) 森林或田间残留物;(v) 未经处理的木质拆除或建筑垃圾;(vi) 食物垃圾和食品加工残留物;(vii) 藻类产生的液体;(viii) 专用能源作物;以及 (ix) 庭院垃圾。 “生物质能”不包括:(i) 用化学防腐剂(如杂酚油、五氯苯酚或铜铬砷)处理过的木片;(ii) 原始森林的木材;或 (iii) 城市固体废物。“合格热能”是指直接加热、蒸汽、热水或其他有用的热形式。“次要用途”是指热能的最终用途:(a) 用于加热、冷却、湿度控制或机械或化学工作;(b) 否则将消耗燃料或电力。“热能可再生能源信用额度”(T-REC) 是指,对于使用生物质能发电的设施,该设施还为次要用途产生热能,相当于三百四十二万英热单位 (Btus) 的可再生能源信用额度用于此类次要用途。“非捆绑可再生能源信用额度”是指与电力分开出售、交付或购买的可再生能源信用额度。所有热能可再生能源信用额度均被视为非捆绑可再生能源信用额度。 194-40-xxx 适用性。如果热能可再生能源信用额度是在利用生物质能发电的设施中为次要目的生产合格热能时产生的,则可用于满足 RCW 19.405.040 的要求。对于多燃料设施,只有合格生物质源产生的热能部分才有资格用于产生热能可再生能源信用额度。如果热能符合以下条件,则不得用于满足 RCW 19.405.040 的要求:(a) 用于运行发电设施或处理设施的燃料;(b) 返回到最初产生合格热能资源的生物质转化装置;(c) 绕过发电装置;或 (d) 在发电设备停止运行时产生。
摘要:热电发电机(TEG)和热电冷却器(TEC)电池冷却系统是一种剪切技术,旨在优化各种应用中电池的性能和寿命,例如电动汽车和可再生能源存储系统。该系统利用热电效应,其中要利用温度差来产生或散热。在电池冷却的背景下,TEGS有效去除充电和放电过程中产生的多余热量,从而防止过热和热降解。相反,TEC可以根据需要加热或冷却电池。这种创新的方法不仅提高了电池效率,还可以延长其运营寿命,从而使其在储能和电动迁移率领域成为至关重要的发展。I.随着世界变成“绿色”的变化,信息可再生能源的应用程序(例如消费电子,车辆甚至建筑物)正在出现。例如,放电率将确定电动和混合电动汽车的加速过程。电池的寿命也很大程度上取决于工作温度。在正常工作条件下,例如-30°C至60℃,电池健康与最佳电池温度范围有很大差异。有效的温度管理系统对电池健康产生了重大贡献,并延长了整体寿命。此外,随着容量和充电率的增加,电池安全问题需要更多关注。然而,研究表明,在50℃以上工作可能对电池的寿命有害''进一步的研究表明,从25℃至40℃的温度范围(与此温度范围最大5℃差5℃)为电池提供了最佳的工作环境,例如铅 - 酸,NIMH和Li-ion''''。随后,已经开发了各种BTMS,以满足对更高功率,更快的充电率和提高Drivin性能的需求。现代BTMS'分为两组:主动系统和被动系统。被动BTM通常采用相变材料,热管和水凝胶。零额外的功耗是这些系统最突出的功能。但是,冷却过程很难管理。主要问题是在某些情况下的冷却效果可能非常有限。已开发了多年的车辆热电发电设备。相比之下,电池热管理使用的热电冷却器(TEC)是电动汽车相对较新的候选者。这些受益于强大的冷却能力和可靠的工作潜力,并越来越关注整合到BTMS中。热电冷却器(TEC)基于电压转换为温度差。这种毛皮 - 隔离效果以及汤普森效应属于热电效应。热电效应是指从热到电的所有转化过程,反之亦然。热电冷却器的主要优点是相对安静,稳定且可靠的。此外,可以通过改变电压供应而轻松控制温度。1.1目标:1为电动汽车开发基于TEG和TEC的空调原型。2优化系统的冷却效率,同时最大程度地减少功耗。 3实施可靠的温度控制机制,以实现机舱舒适度。 4确保安全功能以防止过热和电气问题。 5通过测试和数据分析评估系统的性能。 6评估将毛皮尔系统整合到商业电动汽车中以进行实际使用的可行性。 1.2预期结果:TEG(热电发生器)和TEC(热电冷却器)电池冷却系统有望提供2优化系统的冷却效率,同时最大程度地减少功耗。3实施可靠的温度控制机制,以实现机舱舒适度。4确保安全功能以防止过热和电气问题。5通过测试和数据分析评估系统的性能。6评估将毛皮尔系统整合到商业电动汽车中以进行实际使用的可行性。1.2预期结果:TEG(热电发生器)和TEC(热电冷却器)电池冷却系统有望提供