摘要:本文介绍了褪黑激素与神经发育障碍之间的关系的回顾。首先,褪黑激素的抗氧化特性及其生理作用被认为可以更好地理解褪黑激素在典型和非典型神经发育中的作用。然后,在婴儿期期间发生的几种神经发育疾病,例如自闭症谱系障碍或与自闭症相关的神经遗传疾病(包括史密斯 - 玛格尼斯综合症,安吉尔曼综合症,雷特综合征,结节性硬化症或威廉姆斯综合症或威廉姆斯 - 伯伦综合症)和新的疾病疾病,后来又是伊斯特氏症,后来又是伊斯特氏症,以后再发生讨论了有关褪黑激素的产生和昼夜节律受损的讨论,尤其是睡眠 - 唤醒节奏。本文讨论了在这些不同的心理状况中通常观察到的重叠症状的问题,并辩论了褪黑激素生产异常的作用,并改变了昼夜节律在病理生理学和这些神经发育障碍的行为表达中的作用。
摘要在该领域达成共识,即小胶质细胞在神经发育过程中起着杰出作用,例如突触修剪和神经元网络成熟。因此,出现了当前将小胶质细胞缺陷与神经发育障碍(NDDS)相关的动量。这个概念受啮齿动物的研究和临床数据的挑战。有趣的是,小胶质细胞的数量减少或小胶质细胞功能不一定会导致明显的NDD表型,而神经精神病症状似乎主要在成年期发展。因此,仍然开放讨论小胶质细胞是否确实是健康神经发育必不可少的。在这里,我们批判性地讨论了小胶质细胞在突触修剪中的作用,并突出区域和年龄依赖性。我们提出了在NDD的背景下的小胶质细胞介导的突触修剪的更新模型,并讨论了针对这些疾病治疗这些疾病的小胶质细胞的潜力。
A EISAI Inc.,神经病学业务集团,100 Tice Blvd,Woodcliff Lake,NJ 07677,美国b Sorbonne University b Sorbonne University,Grc n°21,阿尔茨海默氏症精密医学(APM),APM,Pitié-Salpêtrière医院,Boulevard del'Hôpital,F-75013关于认知神经病学和阿尔茨海默氏病,Feinberg医学院,西北大学,芝加哥,芝加哥,美国伊利诺伊州芝加哥市D ku Leuven神经科学系,比利时E脑与疾病研究中心,VIB,VIB(Flanders for flanders forection of Biuven of Biuven of in Colucation of Biuven of Lenturn of Lenturn of Lenthistia神经科学和RETA LILLA WESTON实验室,UCL皇后广场神经病学研究所,伦敦,英国H代谢生物化学中心(BMC),Ludwig-Maximilians-University univerity Munich,81377 Iniuroscience i Municianty i Munich i Muniche,Iniuroscience i Munich y neuroscience,Unyucient,Uniuctiut Newerston。 Neurosciences NV,TechnologiePark 4,9052,根特,比利时。k神经药理学实验室,意大利罗马Ebri Rita Levi-Montalcini基金会。l意大利罗马托尔加塔大学生物学系药学院。m神经康复科学系,卡萨·库拉·波利克利科(Casa Cura Policlinico),意大利米兰,意大利n研究与发展部,奇斯·法拉西蒂(Chiesi farmaceutici)英国剑桥大学的药物发现研究所R Janssen Research and Development,Janssen Pharmaceutica N.V.,比利时BEERSE,比利时的Spidemiologicy and Biostatistics and Sidifational Health系,McGill University,Montreal,QC,QC,QC,加拿大T Brain&Spine Institute(ICM),INSERM U 1127,cn.255, L'Hôpital,F-75013,巴黎,法国U Eisai Co.
pal和他的同事在调查tick免疫时发现了他们的发现,这是壁虱生物学的一个知名度。在他们的初步研究中,试图了解tick免疫系统如何识别伯氏细菌,研究人员喂养了从伯氏感染的小鼠或未感染的小鼠的血液粉。比较两组,他们发现感染的血液粉激活了通常会在细胞内部产生能量的tick中的蛋白质。该蛋白质与一个称为JAK/STAT的简单信号通路有关,该途径都存在于所有多细胞生物中。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年1月24日。 https://doi.org/10.1101/2023.01.23.525218 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月24日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.22.639699 doi:Biorxiv Preprint
Beghetti I.,Barone M.,Turroni S.,Biagi E.,Sansavini A.,Brigidi P.等。 (2022)。 早期肠道菌群和早产儿的神经发育:双歧杆菌的任何作用? 欧洲儿科杂志,181(4),1773-1777 [10.1007/s00431-021-04327-1]。Beghetti I.,Barone M.,Turroni S.,Biagi E.,Sansavini A.,Brigidi P.等。(2022)。早期肠道菌群和早产儿的神经发育:双歧杆菌的任何作用?欧洲儿科杂志,181(4),1773-1777 [10.1007/s00431-021-04327-1]。
1心血管遗传学,库氏圣司机研究中心,蒙特利尔,QC H3T 1C5,加拿大; lara.michele.feulner@umontreal.ca(l.f.); patrick.van.vliet.hsj@ssss.gouv.qc.ca(p.p.v.v.)2蒙特利尔大学蒙特利尔分子生物学系,QC H3T 1J4,加拿大3 LIA(国际相关实验室)Chu Sainte-Justine,蒙特利尔,QC H3T 1C5,加拿大; Michel.puceat@inserm.fr 4 LIA(国际相关实验室)Inserm,13885,法国Marseille 5 Inserm U-1251,Marseille Medical Genetics,Aix-Marseille University,Aix-Marseille University,13885 Marseille,France 6 Marseille,6 Intreal,Montreal,Montreal,QC H3 Trestrics 1J4生物化学和分子医学系,生物化学和分子医学系蒙特利尔,QC H3T 1J4,加拿大8蒙特利尔大学生物化学系,蒙特利尔大学,QC H3T 1J4,加拿大 *通信:Gregor.andelfinger.med@ssssss.gouv.qc.qc.qc.ca
缩写:ALFF,低频波动的幅度; AUD,听觉网络;大胆,血氧水平依赖; CO,Cingulo-Obercular网络; Co/sal,Cingulo-opercular/显着网络;丹,背注意网络; DMN,默认模式网络(a,前p,p,postterior,v,腹侧); FC,功能连接; FP,额叶网络; GA,胎龄; ICA,独立组件分析; MN,电机网络; MRI,磁共振成像; Reho,区域同质性; ROI,感兴趣的地区; SAL,显着网络; SMN,感觉运动网络; Van,腹注意网络; VIS,视觉网络。
缩写:ALFF,低频波动的幅度; AUD,听觉网络;大胆,血氧水平依赖; CO,Cingulo-Obercular网络; Co/sal,Cingulo-opercular/显着网络;丹,背注意网络; DMN,默认模式网络(a,前p,p,postterior,v,腹侧); FC,功能连接; FP,额叶网络; GA,胎龄; ICA,独立组件分析; MN,电机网络; MRI,磁共振成像; Reho,区域同质性; ROI,感兴趣的地区; SAL,显着网络; SMN,感觉运动网络; Van,腹注意网络; VIS,视觉网络。