摘要:颗粒物尺寸≤2.5µm(PM 2.5)是一个关键的环境威胁,极大地助长了全球疾病负担。然而,伴随着该领域的快速研究进展,现有的关于发育毒性的研究仍然受到数据源有限,质量不同和深入的机械分析不足的限制。本综述包括当前可用的流行病学和实验室证据,并全面地表征了PM 2.5对不同地区和各种污染源发展的个体的不利影响。此外,本综述探讨了PM 2.5对不同种族,性别和社会经济水平的个人对不良出生结果以及心肺和神经系统发展的影响。此外,PM 2.5的不良健康影响的分子机制主要包括转录和翻译调节,氧化应激,炎症反应和表观遗传调节。研究了有关公共卫生与PM 2.5之间关联的主要发现和新颖观点,强调了将来的研究需要探索其来源,组成和性别特定的效果。此外,还需要进一步研究,以深入研究更复杂的潜在机制,以有效预防或减轻空气污染对人类健康的有害影响。
摘要:甲基parathion(MP)已被广泛用作食品保存和害虫管理的有机磷农药,导致其在水生环境中的积累。,MP对非目标物种的早期发育毒性,尤其是水生脊椎动物,尚未得到彻底研究。 在这项研究中,用2.5、5或10 mg/l的MP溶液处理斑马鱼胚胎,直到施肥后72小时(HPF)。 结果表明,MP暴露降低了斑马鱼胚胎的自发运动,孵化和存活率,并降低了诱导的降低异常异常,例如身体长度缩短,蛋黄水肿和脊柱曲率。 值得注意的是,发现MP会诱导心脏异常,包括心包水肿和心率降低。 暴露于MP会导致活性氧(ROS)的积累,超氧化物歧化酶(SOD)活性降低,过氧化氢酶(CAT)活性增加,丙二醛(MDA)水平升高,并导致Zebrafifififiahyde(MDA)水平并引起心脏凋亡。 此外,MP影响了与心脏发育相关基因的转录(VMHC,SOX9B,NPPA,TNNT2,BMP2B,BMP4)和与凋亡相关的基因(P53,BAX,BCL2)。 astaxanthin可以通过下调氧化应激来挽救MP诱导的心脏发育缺陷。 这些发现表明MP诱导心脏发育毒性,并提供了MP对水生生物的毒性的其他证据。,MP对非目标物种的早期发育毒性,尤其是水生脊椎动物,尚未得到彻底研究。在这项研究中,用2.5、5或10 mg/l的MP溶液处理斑马鱼胚胎,直到施肥后72小时(HPF)。结果表明,MP暴露降低了斑马鱼胚胎的自发运动,孵化和存活率,并降低了诱导的降低异常异常,例如身体长度缩短,蛋黄水肿和脊柱曲率。值得注意的是,发现MP会诱导心脏异常,包括心包水肿和心率降低。暴露于MP会导致活性氧(ROS)的积累,超氧化物歧化酶(SOD)活性降低,过氧化氢酶(CAT)活性增加,丙二醛(MDA)水平升高,并导致Zebrafifififiahyde(MDA)水平并引起心脏凋亡。此外,MP影响了与心脏发育相关基因的转录(VMHC,SOX9B,NPPA,TNNT2,BMP2B,BMP4)和与凋亡相关的基因(P53,BAX,BCL2)。astaxanthin可以通过下调氧化应激来挽救MP诱导的心脏发育缺陷。这些发现表明MP诱导心脏发育毒性,并提供了MP对水生生物的毒性的其他证据。
4.2.3. 作为综合检测策略的一部分,推迟确定性体内检测的潜在方法...................................................................................................................................... 11
考虑到农药神经毒性作用的科学和流行病学证据 1 ,很明显当前的农药风险评估不足以保护人类免受可能损害大脑发育的物质的侵害。失败的一个重要原因是没有强制要求申请人提交发育毒性或针对长期接触的额外神经毒性研究。即使对于那些作用方式是通过神经系统的杀虫剂来说,这种差距仍然存在。虽然有明确要求提供足够的关于活性物质潜在有害影响的信息以评估对人类的神经毒性风险,但最近的一份出版物 2 强调指出,这一要求并不能确保申请人始终如一地提交有关其物质发育神经毒性潜力的数据。鉴于此,PAN Europe 敦促将提交发育毒性研究作为所有合成活性物质的一项系统性要求。
4,如果赞助商不打算进行COC DDI研究,则应提供足够的理由。应考虑的某些因素包括:(1)基于敏感的CYP3A底物的研究的预计相互作用幅度和其他科学证据,例如缺乏并发的CYP3A抑制作用; (2)研究药是否显示出任何非临床生殖和发育毒性。在此情况下,鼓励赞助商咨询相关的审查部门。
具体而言,NIOSH 已确定利拉鲁肽的致癌危害很可能是通过有丝分裂原 1 作用模式产生的,需要长期持续全身暴露(见下文致癌性)。NIOSH 还发现,发育毒性不太可能仅与母体食物摄入量减少有关,因为除了幼崽体型减小外,胎儿死亡和胎儿畸形的发生率也增加(见下文发育毒性)。NIOSH 同意制造商的观点,即现有数据显示,利拉鲁肽通过口服和吸入途径在大鼠和比格犬中的全身生物利用度低于 0.1% [Sauter 等人,2019 年;Uhl 等人,2020 年]。在食蟹猴中,吸入的生物利用度在 0.6% 到 1.7% 之间 [Nordisk 2020],在比格犬中不到 0.1% [Sauter et al. 2019]。这一证据表明,在职业环境中吸入和食入利拉鲁肽不太可能产生足够高的剂量来引起实验室研究中观察到的致癌或发育影响。同样,皮肤是利拉鲁肽等肽的全身生物利用度的高度限制屏障,皮肤吸收不太可能成为医疗环境中利拉鲁肽全身暴露的重要途径。职业性利拉鲁肽暴露可能由针刺等锐器伤引起。然而,在大多数医疗保健工作场所,针刺伤很少见,并且不太可能产生在实验动物中观察到的毒性所需的长期皮下暴露。偶尔可能会发生通过皮肤、口腔或吸入途径的职业暴露。然而,这些暴露不太可能导致显著的全身暴露,因为利拉鲁肽通过这些途径的全身生物利用度较低。
腺病毒 4 型和 7 型活疫苗口服剂尚未被评估为具有致癌或致突变潜力,或对雄性生育力的损害。 * 炭疽 AVA (BioThrax) 在一项使用怀孕兔子的发育毒性研究中评估了 BioThrax 对胚胎-胎儿和断奶前发育的影响。一组兔子在怀孕前和器官形成期(怀孕第 7 天)被施用 BioThrax 两次。第二组兔子在怀孕前和怀孕第 17 天被施用 BioThrax 两次。BioThrax 以 0.5 毫升/只兔子/次的剂量通过肌肉注射施用。未观察到对交配、生育力、怀孕、分娩、哺乳、胚胎-胎儿或断奶前发育的不良影响。本研究未发现与疫苗相关的胎儿畸形或其他致畸证据。 (CYFENDUS) CYFENDUS 尚未被评估为对动物的致癌性、致突变性或雄性不育性。给雌性大鼠服用 CYFENDUS 对生育力没有影响 * 基孔肯雅病毒
插入中央血管的导管,其尖端位于上腔静脉、下腔静脉或右心房的下三分之一处。CVAD 可用于输送静脉 (IV) 药物、IV 液体、肠外营养液、血液和血液制品。细胞毒性 1 一种治疗剂,旨在(但不限于)治疗癌症。细胞毒性药物是危险药物,在人类或动物中表现出以下一种或多种特性:致癌性、致突变性(遗传毒性)、致畸性、生殖或发育毒性、低剂量时的器官毒性。分散和稀释一种处理特定药物外渗的策略,包括在患处应用热敷。这会导致血管舒张,从而增加药物分布并有助于药物从损伤部位扩散。可根据当地政策使用增加吸收的药物,例如透明质酸酶。红斑 毛细血管扩张和充血导致皮肤发红,通常是炎症或感染的征兆。 渗出 静脉注射过程中液体从血管中逸出/意外泄漏到周围组织或皮下空间 在癌症治疗中,这是指注射过程中 SACT 的泄漏。渗出可能会引起疼痛或无痛。
甲状腺激素(Th)是脊椎动物发育的重要调节剂(Mullur等,2014; Warner和Mittag,2012)。最生物活性的是T3(3,3',5-Triiodo-l-噻都是硫代氨酸),它主要是从T4(甲状腺素)中综合的。它通过与大多数(如果不是全部)细胞类型中存在的核受体结合来对细胞PRO的生动和分化产生多效性影响(Flamant等,2006)。胎儿的开采取决于胎盘的母体Th,直到其自身的甲状腺在怀孕后期起作用(Richard and Flamant,2018年)。早期缺乏症的主要后果是骨骼生长钝化和不可逆转的智力低下。温和的形式与智商低的智商和注意力缺陷多动症和自闭症谱系动物的发生率增加有关(((Andersen等,2014))。甚至是低性甲状腺素血症,即血清中正常T3和TSH水平的低母体T4对脑发育有害(Berbel等,2009)。出于这些原因,早期暴露于称为甲状腺激素破坏者的环境化学物质,或甲状腺激素系统破坏化学物质(THSDC),这些化学物质(THSDC)会干扰对TH的产生或TIS对TH的反应,这是一个日益关注的问题(Cediel-ulloa等人(Cediel-ulloa et al。,2022222)。尽管强烈的努力致力于对假定的环境THSDC进行体外筛查(Paul-Friedman等,2019),但动物暴露仍然是必不可少的,以评估其发育毒性,更具体地说是神经发育的毒性,对推定的THSDCS