摘要。本文的重点是对马铃薯农业生物症中科罗拉多州马铃薯甲虫种群的全面研究。研究深入研究了甲虫种群的形成和生物生物特征的复杂过程。该文章还深入研究了一个被称为Beauveria bassiana VTQ-28的特定菌株,该菌株是从科罗拉多州马铃薯甲虫中分离出来的。该菌株在实验室环境和现场进行了测试,针对科罗拉多州马铃薯甲虫的各个发育阶段。目的是评估Bassiana VTQ-28作为对甲虫的生物防治剂的有效性。此外,该研究还评估了苏云金芽孢杆菌对科罗拉多州马铃薯甲虫的局部采购菌株的杀虫活性。此分析提供了苏云金芽孢杆菌菌株作为生物控制的另一种途径的潜力的见解。通过彻底检查人口动态,生物生物学特征以及特定微生物控制科罗拉多州马铃薯甲虫的潜力,这项研究有助于理解马铃薯农业生物症中的有害生物管理策略。这些发现对可持续农业实践和这种具有经济意义的害虫的有效控制具有影响。关键字。Beauveria Bassiana,B。苏云金,生物防治,微生物,科罗拉多州马铃薯甲虫。
摘要 通过使用针对肝脏(连接蛋白 26 和 32)和心脏(连接蛋白 43)间隙连接蛋白的抗体,我们已将免疫反应性定位到成年啮齿动物脑部冷冻切片中的特定细胞类型。在少突胶质细胞和一些神经元中发现了连接蛋白 32 反应性,而对连接蛋白 26 和 43 的反应性则定位到软脑膜细胞、室管膜细胞和松果体。星形胶质细胞中也发生了对连接蛋白 43 抗体的免疫反应。此外,在胚胎和出生后脑组织成熟过程中,间隙连接蛋白的表达存在差异。连接蛋白 43 和 26 在胚胎脑部的神经上皮中占主导地位,而连接蛋白 32 几乎不存在。出生后 3 至 6 周,连接蛋白 26 在很大程度上从未成熟的脑部中消失;这一时间过程与连接蛋白 32 表达的增加相对应。连接蛋白 43 的表达在整个胚胎和出生后发育过程中保持较高水平。这些发现表明,大脑中的缝隙连接表达是多种多样的,特定细胞类型表达不同的连接蛋白;这种细胞特异性分布可能意味着这些细胞间通道在不同位置和发育阶段的功能存在差异。
相当一部分外周 B 细胞具有自身反应性,目前尚不清楚这种潜在有害细胞的激活是如何调节的。在这项研究中,我们表明不同的激活阈值或 IgM 和 IgD BCR 可根据发育过程中的不同要求调整 B 细胞激活。我们依靠自身反应性 3-83 模型 BCR 来生成和分析在两种不同背景下仅表达自身反应性 IgD BCR 的小鼠,这些小鼠根据同源抗原的存在与否确定了两个阶段的自身反应性。通过将这些模型与表达 IgM 的对照小鼠进行比较,我们发现与 IgM 相比,IgD 在体内具有更高的激活阈值,因为它需要自身抗原来实现正常的 B 细胞发育,包括等位基因排斥。我们的数据表明,IgM 提供了在早期发育阶段触发编辑任何自身反应特异性所需的高灵敏度,包括那些能够与自身抗原弱相互作用的特异性。相比之下,IgD 具有独特的能力,可以忽略弱相互作用的自身抗原,同时保留对高亲和力抗原的反应性。这种 IgD 功能使成熟的 B 细胞能够忽略自身抗原,同时仍然能够有效应对外来威胁。免疫学杂志,2022,208:293 302。T
CRISPR/CAS系统作为基因组编辑的生物技术工具的应用已彻底改变了植物生物学。最近,曲目通过CRISPR-kill扩展,通过组织表达消除基因组,从而使CRISPR/CAS介导的组织工程能够。使用金黄色葡萄球菌(SACAS9)的Cas9核酸酶,CRISPR-kill依赖于保守重复基因组区域中多个双链断裂(DSB)的诱导,例如rDNA,从而导致靶细胞的细胞死亡。在这里,我们表明,除了组织特异性表达的空间控制外,在拟南芥中,CRISPR介导的细胞死亡的时间控制是可行的。我们建立了一个化学诱导的组织特异性杀伤系统,该系统允许通过荧光标记同时检测靶细胞。作为概念证明,我们能够消除横向根和消融根干细胞。使用多组织启动子,我们在某些发育阶段在不同器官的定义时间点诱导靶向细胞死亡。因此,使用此系统使得有可能获得对某些细胞类型的发育层的新见解。除了在植物中实现组织工程外,我们的系统还提供了一种宝贵的工具,可以通过位置信号传导和细胞间通信来研究开发植物组织对细胞消除细胞的反应。
同种异体胰岛移植可以重新建立血糖控制,并有可能摆脱对胰岛素的依赖,但由于器官捐赠者的稀缺,这一方法受到了严重限制。然而,一种新的胰岛素分泌细胞来源可以使细胞疗法广泛用于糖尿病治疗。干细胞生物学,尤其是多能干细胞 (PSC) 技术的最新突破凸显了干细胞在再生医学中的治疗潜力。对调节 β 细胞发育阶段的理解促成了 PSC 分化为 β 细胞的方案的建立,并且 PSC 衍生的 β 细胞出现在首批开创性临床试验中。然而,植入前最终产品的安全性仍然至关重要。尽管 PSC 在体外分化为功能性 β 细胞,但并非所有细胞都能完成分化,一小部分细胞仍未分化,移植后有形成畸胎瘤的风险。一例干细胞衍生肿瘤可能会使该领域倒退数年。因此,本综述讨论了提高 PSC 衍生 β 细胞安全性的四种方法:将体细胞重编程为诱导 PSC、选择纯分化胰腺细胞、消除最终细胞产品中的污染 PSC、以及使用工程自杀基因控制或破坏致瘤细胞。
摘要:微管和含有特殊微管的结构由微管蛋白组装而成,微管蛋白是真核生物必需蛋白的一个古老超家族。在这里,我们使用生物信息学方法来分析来自顶复门的生物体中微管蛋白的特征。顶复门是原生动物寄生虫,可引起多种人类和动物传染病。单个物种分别含有 1 到 4 个 α - 和 β - 微管蛋白同型基因。这些基因可能指定高度相似的蛋白质,表明功能冗余,或表现出与特殊作用相一致的关键差异。一些(但不是全部)顶复门含有 δ - 和 ε - 微管蛋白基因,这些基因存在于构建含有附属物的基体的生物体中。顶复门 δ - 和 ε - 微管蛋白的关键作用可能仅限于微配子,这与单个发育阶段对鞭毛的有限要求相一致。其他顶复门的序列分化或 δ - 和 ε - 微管蛋白基因的丢失似乎与中心粒、基体和轴丝的需求减少有关。最后,由于纺锤体微管和鞭毛结构已被提议作为抗寄生虫疗法和传播阻断策略的目标,我们将在基于微管蛋白的结构和微管蛋白超家族特性的背景下讨论这些想法。
对妨碍遥感数据解释的因素的敏感性,例如土壤背景、地貌、植物的非光合作用元素、大气、观看和照明几何(Huete 和 Justice 1999)最常用的指数是归一化差异植被指数 (NDVI),由 Rouse 等人 (1974) 提出,计算为近红外和红光区域反射率差与和的商。由于叶片叶肉的散射,植物的绿色部分在近红外区域反射强烈,并通过叶绿素强烈吸收红光和蓝光(Ayala-Silva 和 Beyl 2005)。NDVI 指数最常用于确定栽培植物的状况、发育阶段和生物量以及预测其产量。 NDVI 已成为最常用的植被指数(Wallace 等人,2004 年;Calvao 和 Palmeirim,2004 年),人们做出了许多努力,旨在开发更多指数,以减少土壤背景和大气对光谱测量结果的影响。限制土壤对遥感植被数据影响的植被指数的一个例子是 Huete(1988 年)提出的 SAVI(土壤调节植被指数)。另一个是 VARI 指数(可见大气抗性指数)(Gitelson 等人,2002 年),它大大降低了大气的影响。人们还开发了更多指数来考虑 NIR 和 SWIR 范围内的反射率差异,这表明植物缺水:MSI (
哺乳动物的大脑以高度区域的特定方式逐渐成熟。在特定的发育阶段,脑细胞分化并集成在复杂的功能网络中。细胞分化的程度(例如den- dritic and axonal aborization and myelination) at any given developmental time point is reflected in regional alterations of the neurochemical profile as reported in the rat brain (Tka´cˇ et al.2003)。 因此,随着时间的流逝,代谢产物组成和浓度变化使我们可以推断区域发展程度。 共享共识,包括精神分裂症在内的精神疾病(Tsuang 2000),自闭症(Keller and Persico 2003)和注意力/多动障碍(有关评论,请参见Curatolo等人。 2009)由于神经发育过程中遗传和环境风险因素之间的相互作用而产生。 为了更好地理解这些疾病,表征是至关重要的2003)。因此,随着时间的流逝,代谢产物组成和浓度变化使我们可以推断区域发展程度。共享共识,包括精神分裂症在内的精神疾病(Tsuang 2000),自闭症(Keller and Persico 2003)和注意力/多动障碍(有关评论,请参见Curatolo等人。2009)由于神经发育过程中遗传和环境风险因素之间的相互作用而产生。为了更好地理解这些疾病,表征
从根本上讲,所有生物都是由相同的原材料制成的,即元素表的要素。生化多样性是通过如何利用这些元素,用于什么目的以及在哪个物理位置来实现的。确定元素分布,尤其是痕量元素的元素分布,这些元素促进了本质酶活跃中心的代谢,可以确定代谢,营养状况或生物体的发育阶段的状态。光合真核生物,尤其是al-gae,是对元素分布进行定量分析的出色主题。这些微生物利用独特的代谢途径,这些途径需要各种痕量营养素的核心以实现其操作。光合微生物在养分有限或毒素污染的栖息地中也具有重要的环境作用。因此,光合真实的真核生物对生物技术剥削,碳固存和生物修复具有极大的兴趣,许多应用涉及各种痕量元素,因此影响其配额和细胞内分布。为元素成像开发了许多不同的应用,允许亚细胞分辨率,X射线荧光显微镜(XFM,XRF)处于最前沿,可以在非破坏性方法中对完整细胞的定量描述。本教程审查总结了使用XFM对真核藻类的定量单细胞元素分布分析的工作流程。
瑞典农业中有超过90%的农业是雨天,因此未来的气候变化可能会在未来几十年内对农业生产构成风险。预计北欧的年度降水总体增加,但瑞典仍可能面临灌溉的需求,如2018年夏季的干旱所示。因此,应考虑瑞典农业的适应包括灌溉农业。为了评估灌溉的理论需求,对瑞典的不同位置以及每个位置的不同土壤作品对进行了计算。由瑞典气象和水文研究所创建的预计气候数据集的原位天气数据用于评估1981 - 2050年期间灌溉需求的变化。结果表明,在季节初(5月至6月),越来越多的谷物作物灌溉,其主要原因是:i)转移到裁切期的较早开始,导致早期灌溉的需求; ii)春季干燥的天气的可能性更高,大大增加了干燥年份的灌溉要求。生长季节以后开始的农作物(例如,马铃薯)在7月份对灌溉的需求越来越多。作物发育阶段会较早地发生,导致较早的收获,从而减少了八月的灌溉要求。但是,本研究开发的计算方法可能低估了对灌溉的需求,这可能比此处报道的要高。