结果与讨论:发现了基因表达较高或较低的突变体,最终成熟谷物植酸酶活性 (MGPA) 较高或较低。田间试验和发芽期间的肌醇磷酸分析表明,PAPhy_a 不会影响试验条件下的农艺性能,但它确实缩短了发芽期间磷酸盐动员的滞后时间。较高的内源性 MGPA 可提高饲料用谷物质量,因为它可提高单胃动物的磷酸盐生物利用度。此外,由于 PAPhy_a 启动子的目标 CRE 基序与一系列种子表达基因(如关键的谷物和豆类储存基因)共享,因此当前结果展示了一种调节一系列种子基因的单个基因表达水平的概念。
摘要:土壤盐分抑制作物发芽和幼苗生长,导致作物立地不均、生长不均匀、产量低下。本研究旨在评估接种从盐渍土中分离的植物生长促进细菌 (PGPB) 菌株 (E1 和 T7) 的十字花科种子的早期耐盐性。在对照和盐度条件下培养未接种和接种的 Lobularia maritima、Sinapis alba 和 Brassica napus 种子,首先在琼脂平板中评估每种盐的发芽抑制浓度,然后在用含有 0 或 75 mM NaCl 的水灌溉的土壤中培养。我们的结果表明,T7 是唯一能够在盐渍条件下增加 L. maritima 发芽的菌株。然而,接种 T7 的 L. maritima 和 S. alba 植物以及接种 E1 的 B. napus 植物的茎生物量、根长和分枝数均有所增加。同时,这些幼苗表现出较少的氧化损伤和更强的平衡植物活性氧生成的能力。这项研究表明,用耐盐 PGPB 菌株接种种子是一种适合在早期阶段改善盐度负面影响的策略。尽管如此,观察到的特定植物-宿主相互作用凸显了针对特定不利环境条件建立定制的 PGPB-作物关联的必要性。
Selcuk等人,2008年使用血浆灭活或消除了两种致病性曲霉属。和Penicillum spp。,人为地感染了豆类和谷物种子的种子。治疗使病原体的攻击降至1%以下,但保留了种子的发芽质量。
注:聚类是指系统发育分析中显示的 S . vulgaris 种群的遗传聚类关系(图 2)。显著影响以粗体表示。对于二元数据(发芽、开花、存活),采用二项分布;对于计数数据(花、叶、枝的数量),采用泊松误差分布。
药物再利用是一种新兴策略,用于确定已在临床用于治疗不同疾病的药物的新靶点。这是一种既经济又省时的替代方法,因为药理学、安全性和毒性特征已经确定。质子泵抑制剂泮托拉唑在针对癌细胞系进行的几项研究中显示出抗癌活性,还表明它在抗血管生成机制中发挥作用。为了确定抗癌特征,进行了 MTT 试验。结果表明泮托拉唑对癌细胞系具有细胞毒性。对绿豆进行了细胞毒性的初步评估,并评估了其发芽反应。发芽抑制也揭示了该药物的细胞毒性潜力。进行了绒毛尿囊膜试验以评估该药物的血管生成潜力。浓度为 50 微克/毫升的泮托拉唑破坏了受精卵中的血管形成。
使用化学品来防止或延缓食物腐败,部分原因是此类化合物可用于治疗人类、动物和植物的疾病。许多化学化合物,无论是天然存在的、在加工过程中形成的还是合法添加的,都可以杀死微生物或控制其在食品中的生长。它们作为一个整体被指定为防腐剂。一些天然存在的防腐剂可以在食物中以足够的量存在以产生抗菌作用,例如蛋清中的溶菌酶和柑橘类水果中的有机酸。一些抗菌剂可以在食品加工过程中以足够的量形成以控制不良微生物的生长,例如酸奶发酵中的乳酸。在众多的食品添加剂中,有些是专门用于保存食品以防止微生物侵害的(例如腌制肉类中的NO 2可以控制孢子发芽,特别是肉毒杆菌的孢子发芽),而其他一些则被添加以改善食品的功能特性(例如丁基羟基茴香醚,BHA,用作抗氧化剂,尽管它具有抗菌特性)。