1)Benowitz Li,Carmichael ST:促进轴突重新布线以改善中风后的结果。Neurobiol Dis 37:259 - 266,2010 2)Hira K,Ueno Y,Tanaka R等人:星形胶质细胞 - 衍生的外泌体,该外泌体用Semaphorin 3a抑制剂增强的卒中均通过Prostaglandin D2合成酶进行了。中风49:2483 - 2494,2018)李S,Nie EH,Yin Y等:GDF10是轴突发芽和中风后功能恢复的信号。nat Neurosci 18:1737 - 1745,2015 4)Li S,Overman JJ,Katsman D等人:一个年龄 - 相关的发芽 - 转录组提供了中风后轴突芽的分子控制。nat Neurosci 13:1496 - 1504,2010 5)Ueno Y,Chopp M,Zhang L等:轴突生长和DEN-在经验后的皮质细胞皮质 - 梗塞区域中的干燥可塑性。中风43:2221 - 2228,2012 6)Kaneko S,Iwanami A,Nakamura M等人:选择性SEMA3A抑制剂增强了受伤脊髓的再生反应和重新恢复。nat Med 12:1380 - 1389,2006 7)Hou St,Keklikian A,Slinn J等人:持续 - 在长期恢复期间缺血性小鼠脑中的Semaphorin 3a,Neuropilin1和Doublecortin表达的调节。生物化学
微生物菌群,土壤中大量有益的微生物和成熟的腐殖质代表了计划罚款和质量产量的基础。收获后立即使用大家庭时,可以实现最佳效果。收获后,稻草被切割和处理。对于大家庭的表面(20-30 l/hectare),然后是浅耕作,这一点很重要。土壤中微生物的存在显着增加了有机物的百分比。在大约50-60天内,来自大家庭的微生物应将吸管转化为成熟的腐殖质。腐殖质应保留土壤水分,以便植物在一年中的干旱期内也应具有足够数量的水分,这将导致产量显着提高。为了产生最大的作用,可以同样在表面上散布来自其他培养物的肥料或植物残留物。细菌在此阶段艰难地死亡,因为如果当前条件不利,它们会通过孢子释放过程来保护自己冬眠,并且正在等待适当的时刻变得活跃。当土壤温度超过6 c°或空气温度高于10 c°时,通常是活跃的。实践表明,用高脂肪处理的种子在发芽,发芽和根源建立期间可提供出色的效果,从而确保比任何其他形式的治疗植物都在播种之前确保植物的生长和发育更好。由于植物已经以极好的方式开发和进步,并创造了最大收益潜力,因此建议在春季,2月底或3月初进行另外两种处理,从而保证创纪录的收率!
放置在国际空间站内五个月,在国际空间内外五个星期以外,并保留在地球上作为对照。所有三种种子处理在我们的实验室中以相似的发芽百分比发芽,近100%,并成长为形成良好的幼苗。该天体生物学实验属于粮农组织/IAEA协调研究项目(CRP),D24015,该项目的重点是辐射诱导的作物改善遗传变异的先进技术(第17页)。这个CRP于2022年发起,作为其目标的一部分,其不同类型的辐射(包括宇宙)对DNA结构变化和植物生物学的影响。在15个项目组件中,四个地址空间引起的突变,包括我们自己在ISS的可行性研究。首先报道了其中一个项目,分子分析了水稻基因组的遗传烙印以及Chang'e 5的围绕空间飞行引起的种质的增强,表明深空飞行导致了广泛的基因组变异。gc至AT突变较高,DNA甲基化的修饰不同,RNA甲基化的修饰显着,并且与地球控制相比,在圆周深空飞行中,差异化甲基化区域富含在水稻中的基因。与其他空间诱变方法相比,在深空样品中恢复了许多不同的植物和谷物型突变体,突变频率和生物学效应都更高。关于天文学的话题,我进一步指出了我们成功组织的虚拟活动“在气候变化下为粮食安全的天体生物学和空间育种供粮食安全育种”,在2023年10月18日的世界粮食论坛上(第15页)。
植物的反应可称为向光性,即枝条向光弯曲,或向地性,即根部向重力方向移动。这些反应由激素生长素控制。在向光性中,生长素从枝条有光的一侧移动到无光的一侧,这意味着那一侧的细胞会生长得更多。在向地性中,高浓度的生长素意味着根细胞的生长受到抑制。(仅限 HT)赤霉素也是一种植物激素,它通过分解种子中的食物储存来启动种子发芽过程,并刺激茎的生长。乙烯是另一种控制细胞分裂的激素。
已经向我表明了对污水处理的有益效果(14-18):气味的减少,农业食品的生产,农业生产产生的固体和液体愿望的管理,食品加工业,纸张工厂,屠宰场等(2)。 div>另一方面,在农业部门,它们促进了种子发芽,有利于水果的开花,生长和发育,并允许植物更成功地再现。 div>此外,已经表明它们改善了土壤的物理结构,增加了化学生育能力,并抑制了几种在许多农作物中引起疾病的植物病毒剂(19)。 div>此外,从生理角度来看,已经确定它们会增加培养物的光合作用能力
成功的发芽和幼苗建立是自然环境中作物产量和植物生存的重要决定因素。发芽势受到次优环境条件的损害,这些环境条件会导致种子老化和高水平的基因组损伤。然而,在随后的幼苗生长上积累的DNA损伤的诱变和生长抑制潜力在很大程度上是未知的。拟南芥种子在染色体断裂修复因子DNA连接酶4和DNA连接酶6中表现出对自然衰老的影响的超敏反应,相对于野生型种子,发芽活力和幼苗生物量降低。在这里,我们确定陈旧的拟南芥种子在根生组织中显示出较高的程序性细胞死亡(PCD)水平,该拟南芥持续到幼苗建立中,在DNA双链断裂中表现出较高的细胞死亡。报告基线确定了种子老化对突变水平和肉体内重组频率的影响。种子恶化导致萌发幼苗的移码突变和基因组不稳定性的水平显着升高。因此,在植物生命周期的种子阶段产生的升高水平的基因组损伤可能对植物的随后发育产生显着影响。此外,种子老化的诱变作用可能对植物种群和生态系统的基因组稳定性具有长期影响。总体上,我们确定了在次优质量种子对随后的植物生长和基因组稳定性的影响中累积的基因组损害,这对农作物产量和植物生存的影响有相关的影响。
摘要:种子质量是物种繁殖的重要特征。在这种情况下,Cenostigma pyramidalis 对于恢复退化地区具有重要特性。然而,由于它生长在卡廷加,这种物种更容易受到植物病原体的感染。因此,在种植前后处理其种子以防止真菌的发生非常重要。这些替代方法之一是使用硅,它有助于提高活力和控制疾病。在这种情况下,目标是评估不同来源的硅在控制与 C. pyramidalis 种子相关的天然真菌及其生理质量方面的作用。实验在巴西帕拉伊巴联邦大学阿雷亚校区 II 的植物病理学实验室进行。种子在经过划痕处理以克服休眠后,用以下物质处理:T1 - 对照;T2 - Captana,T3 - Agrosilício plus®;T4 - Rocksil®;T5 - Sifol®; T6 - Chelal®;T7 - Bugram®。实验采用完全随机设计。对种子进行卫生、发芽和出苗测试。发芽和出苗测试中,每个处理使用 100 粒种子,重复 4 次,每次 25 粒种子;健康测试中,每个处理使用 10 次,每次 10 粒种子。所有硅源均能有效控制 C. pyramidalis 种子中的曲霉菌、枝孢菌和青霉菌。建议使用 Sifol® 进行处理,以控制真菌的发生率,而不会影响种子的生理质量。
2019年在巴西首次在巴西报道了Goiaba Pink品脱,被确定为一种生物疾病,其因果剂是Cercospora属的真菌。然而,开发的工作并未表征物种水平的病原体。为了更好地理解新的patosystem,重要的是要表征类型的病原体,以及与环境环境条件,病原体对杀菌剂的敏感性和孤立保存方法有关的进行研究。旨在识别玫瑰斑点引起尾孢子的类型的工作,以及评估与温度和润湿期有关的孢子发芽,测试病原体对杀菌剂在体外的敏感性,并评估Cercospora SP的冷冻保存方法。在甘油中。通过对17个单型分离株的遗传分析。与粉红色的品脱相关,观察到与该疾病相关的五种尾孢子,其中与尾pecececearum和Cercospora cyperina分组的物种尚未报道。在体外观察到的环境条件是cercospora sp分生孢子的发芽。类似于在圣保罗州种植番石榴树的气候条件,因此在田间条件下,种植区域对病原体感染具有有利的条件。化学杀菌剂,例如体外吡拉克洛斯特罗和丙吡啶唑,在控制cercospora sp。中的有效性不佳,而三甲状腺素生物杀菌剂在菌落生长控制中表现出很高的疗效。甘油中的Cerospora冷冻保存已被证明是一种效率低下的方法,存储期限有限。本研究中获得的结果可能有助于开发警告系统,以及该领域的这种新疾病的管理。
在100°C处受到自由蒸汽的影响。此过程称为tyndallisation(John Tyndall之后)或分数灭菌或间歇性灭菌。营养细菌在第一次接触中被杀死,第二天发芽的孢子在随后的几天被杀死。tyndallization该过程涉及在大气压力下煮沸一段时间(通常为20分钟),冷却,孵化一天,煮沸,冷却,一天孵化一天,沸腾,冷却,孵化一天,最后再次沸腾。三个孵化期是允许在上一个沸腾时期生成的耐热孢子以形成热敏的营养(生长)阶段,这可以通过下一步的沸腾步骤杀死。这是有效的,因为许多孢子被热休克刺激以生长。