生物药物通常是使用细胞培养技术生产的,在生物反应器中培养了活细胞以产生所需的治疗蛋白。工业生物技术已导致生物加工技术,优化细胞培养条件以及生产率提高。这导致了更具成本效益和可扩展的过程,使这些挽救生命的药物更容易被全球患者使用。基因编辑技术的进步,例如CRISPR-CAS9,已经为个性化医学开辟了新的途径。工业生物技术在应用基因编辑技术来修饰细胞的基因组成,为个别患者的特定需求量身定制治疗方法中起着至关重要的作用。这种方法在治疗具有强遗传成分的遗传疾病,癌症和其他疾病方面表现出了巨大的希望[2]。
有一种消费植物食品的趋势,尤其是来自公众旨在减少肉类消费的趋势。基于植物的食物饮食可能具有较低的维生素B 12来源,因为植物不会产生它们。可以减轻这种方法的一种可能的替代方法是食用发酵蔬菜和水果。因此,我们旨在概述用发酵的蔬菜和水果进行的工作,并证明有可能获得必要的日常维生素B 12来进行人类健康和维护。维生素B 12,也称为钴胺素,充当真核生物中蛋白蛋白合酶和甲基甲硅烷酸突变酶的辅助因子。成人男女的饮食参考值范围为2至4μg/天;但是,根据特殊建议,要求可能会增加。维生素B 12缺乏症的主要原因是自身免疫性疾病(例如有害贫血),吸收不良和饮食不足。补充维生素缺乏的通常采取的措施之一是补充。也可以通过发酵获得富含维生素B 12的食物。不同的植物材料和微生物可用于生产发酵产品并增强传统产品,例如Tempeh,以增加最终产品中的维生素B 12浓度。在发酵蔬菜和水果中,维生素B 12的生物恢复性和生物利用度是要考虑的重要因素,需要更多的研究。大豆发酵食品的摄入量,例如Tempeh,豆腐和Cheonggukjang与认知增强和神经保护作用有关。除了发酵的蔬菜和水果外,其他非动物源B 12的其他非动物来源值得关注的是藻类和蘑菇。由于发酵可以产生大量的维生素B 12,因此发酵蔬菜和水果是可行的替代来源,可用于摄入这种维生素。
数千年来,人类一直享受着微生物在发酵食品和饮料中提供的新口味、更长的保质期和营养价值。最近的发酵测序调查已经绘制了跨空间、时间和生产实践的微生物多样性模式。但对发酵食品微生物组如何组装的机制理解直到最近才开始出现。以三种食物(表面成熟的奶酪、酸面团发酵剂和发酵蔬菜)为例,我们使用生态和进化框架来确定微生物群落在发酵过程中的组装方式。通过将原位测序调查与体外模型相结合,我们开始了解扩散、选择、多样化和漂移如何产生发酵食品群落的多样性。大多数食品生产商并不知道他们的生产环境中正在发生的生态过程,但生态学和进化的理论和模型可以为管理从农场到发酵的发酵食品微生物组提供新方法。
发酵是一种令人着迷的生物过程,数千年来,人类一直利用这一过程转化物质,生产出食品、饮料和有价值的产品。发酵是一种在无氧条件下发生的代谢途径,微生物可以将糖和其他有机化合物转化为能量和各种最终产品。本文深入探讨了发酵的世界,探索了它的历史、机制、应用以及它所产生的各种令人愉悦的产品。发酵的实践可以追溯到几千年前,在古代文明中就有使用发酵的证据。早期人类发现,将某些食物和饮料暴露在环境中会导致味道、保存和营养价值的改变。这些观察为开发至今仍备受推崇的发酵食品和饮料奠定了基础。发酵是由多种微生物协调的,包括细菌、酵母和霉菌。这些微观的微生物通过一系列酶促反应将复杂的有机化合物转化为更简单的物质。某些细菌,如乳酸杆菌,会将糖转化为乳酸,从而使酸奶、酸菜和泡菜等发酵食品具有浓郁的味道。酵母,如酿酒酵母,会将糖代谢为酒精和二氧化碳。这个过程是啤酒、葡萄酒和烈酒等酒精饮料产生的过程。醋酸杆菌会将酒精氧化产生乙酸,从而产生苹果醋等醋。发酵有各种各样的应用,从烹饪美食到工业过程。发酵食品不仅可以增强风味和保存,而且通常还能为肠道健康提供益生菌益处。例如奶酪、酸面包、泡菜和开菲尔。酒精饮料
维生素E是使用最广泛的维生素之一。在经典的维生素E(A-生育酚)的经典商业合成中,Isophytol的化学合成是关键的技术障碍。在这里,我们从微生物发酵法尼烯中建立了一个新的iSophytol合成过程。为了实现Farneene生产的有效途径,酿酒酵母被选为宿主菌株。首先,筛选了来自不同来源的B-氟尼烯合酶基因,并通过蛋白质工程和系统代谢工程,实现了酿酒酵母中的b -farnesene高产量(55.4 g/l)。这种法尼烯可以分为三个步骤,分为92%,在经济上与最佳的总化学合成相等,可以将其化学转化为Isophytol。此外,我们共同制作了番茄红素和法尼烯,以降低Farnesene的成本。基于这一新计划的工厂于2017年在中国湖北省成功运营,每年产量为30,000吨维生素E。这一新过程由于其低成本和安全性而彻底改变了维生素E市场。
以下国家发酵食品工作组成员参加了会议,参加了讨论并审查了该指南。自出版以来(2024)以来,会员和代理名称可能已经改变。lihua粉丝 - 农业和农业食品加拿大戴尔·纳尔逊(Dale Nelson) - 艾伯塔省卫生服务,环境公共卫生,洛林·麦金太尔(Lorraine McIntyre Agriculture Douglas Walker – New Brunswick Department of Health Rosalie Lydiate – Government of Newfoundland and Labrador Sonya Locke, Dana Trefry – Nova Scotia Environment and Climate Change Rick Kane – Nova Scotia Perrenia Food and Agriculture Inc. Naghmeh Parto, Katherine Paphitis – Public Health Ontario Dwayne Collins, Ellen Stewart, Stephanie沃尔扎克 - 爱德华王子岛健康与健康乔伊·辛恩 - 爱德华王子岛生物食品技术技术朱莉·桑森,卡罗琳·弗里戈特,玛丽·埃夫·鲁西,Yosra ben Fadhel - QuebecMinistèredel'Arighties et de l'alimenties et de l'alimenties et l'Alimenties Kelsie divan kelsie divan kelsthe
发酵是植物药的重要混合技术。发酵通过特定的微生物学过程转化并增强了植物药的活性成分,最终影响其药理作用。本综述探讨了在抗肿瘤,降低性,抗氧化剂,抗氧化剂,抗菌,美容和肠道调节等地区使用发酵植物药的使用。它阐明了潜在的药理学机制,并讨论了发酵技术对植物药物的好处,包括减少毒性副作用,增强药物效率和创造新的活性成分。本文还讨论了引起发酵过程的常见菌株和因素,这对于这些药物的成功转化和增强至关重要。综上所述,这项研究旨在为植物药发酵技术的进一步研究和更广泛的应用提供参考点。
利用微生物从碳水化合物中生产大宗化学品和生物燃料,与低成本的化石燃料生产形成竞争。为了限制生产成本,需要高滴度、高生产率,尤其是高产量。这就要求参与产品形成的代谢网络必须是氧化还原中性的,并保存代谢能量以维持生长和维持。在这里,我们回顾了可用于节约能源和防止不必要能量消耗的机制。首先,概述了现有糖基发酵过程中的 ATP 生产。描述了底物水平磷酸化 (SLP) 和所涉及的激酶反应。基于这些反应的热力学,我们探索是否可以将其他激酶催化反应应用于 SLP。离子动力的产生是另一种节约代谢能量的方法。我们举例说明了碳碳双键还原、脱羧和氧化还原辅因子之间的电子转移如何支持离子动力的产生。从更广泛的角度来看,讨论了氧化还原电位与能量守恒之间的关系。我们描述了如何通过使用 CoA 转移酶和转羧酶来减少辅酶 A (CoA) 和 CO 2 结合所需的能量输入。糖和发酵产物的运输可能需要代谢能量输入,但可以使用替代运输系统来
以下国家发酵食品工作组成员参加了会议,参加了讨论并审查了该指南。自出版以来(2024)以来,会员和代理名称可能已经改变。lihua粉丝 - 农业和农业食品加拿大加拿大戴尔·纳尔逊 - 艾伯塔省卫生服务,环境公共卫生,洛林·麦金太尔 - 环境卫生服务 - 不列颠哥伦比亚省疾病控制中心格洛里亚·尤里 - 卑诗岛健康局芭芭拉·阿达姆科维奇 - 纽芬兰政府和拉布拉多索尼娅·洛克 - 新斯科舍省的环境与气候变化里克·凯恩 - 新斯科舍省Perrenia Food and Agriculture Inc. Naghmeh Parto。玛丽·埃夫·卢梭(Marie-Eve Rousseau) - 魁北克省农业,despêcherieset de l'Alimentation kelsie dale - 萨斯喀彻温省卫生部