图6。工程的衣壳表现出增强的过表达人,猕猴或小鼠直系同源物的细胞的转导增强。细胞用过表达质粒编码受体1。转染的细胞用每种AAV转导,并在72小时后通过RT-QPCR评估转基因mRNA表达。*处理过程中丢失的样本。(a)CAPSIDS 1-3单独评估并与父母血清型AAV9进行比较。受体靶向的衣壳在过表达受体1的细胞中表现出明显的转基因mRNA表达,但在转染控制条件下却没有明显增强。此外,这种功能的增益在受体的人,猕猴和小鼠直系同源物中得到了保守。(b)相对于对照的转基因表达的倍数增加。一个非线性回归模型用于每个衣壳受体条件的相对转基因表达值。然后将这些值缩放到每个衣壳的转染控制值。(C)在过表达人,猕猴或小鼠受体1的细胞中,工程上的衣壳介导更高的转基因表达。
CDK4/6抑制剂是抑制细胞周期调节的关键分子的口服剂。在内分泌受体阳性(ER +)的患者中,人表皮生长因子受体2阴性(HER2-)乳腺癌,内分泌疗法的CDK4/6抑制剂的COMINATION在转移性环境中是一种有效的治疗方法。现在,在辅助环境中进行了两项研究 - 君主(Abemaciclib 2年)和Natalee(Ribociclib 3年) - 报告无侵入性无病生存期。在这里,我们重新评估了这些开创性试验。首先,在两项研究的控制臂的早期,出现了多余的辍学或损失。由于两个试验都是开放标签的,因此担心辍学的患者不会随机,而是基于社会经济因素并改变了本地选择。由于损失的随访而有可能仅仅是有利的吗?基于重新构建的Kaplan-Meier曲线,我们得出结论这些研究的结果仍然脆弱,很容易审查。其次,在这两个试验中,不良事件均明显更高,其中一些人(例如Natalee中的Covid-19相关死亡)引起了严重的关注。第三,给予辅助治疗的CDK4/6抑制作用相关的潜在成本是前所未有的。纳塔莱策略尤其可能影响35%的新诊断为乳腺癌的患者,即全球发病率最高的癌症。没有基于安慰剂对照试验的确认性数据,或者更好地识别将受益于在辅助环境中添加CDK4 /6抑制剂中受益的患者,我们反对他们常规用作ER + /HER2-早期乳腺癌的辅助治疗。
摘要γ-氨基丁酸(GABA)是一种非肽氨基酸发射器,是现代神经药理学的主要组成部分,也是一般麻醉和治疗药物的最关键靶点部位之一。GABA A型受体(GABA A RS)是中枢神经系统中最丰富的抑制性神经递质受体。它们是快速作用的配体门控离子通道(LGIC)受体类别的一部分,这是一种五个五型cys-loop超家族,可介导成熟大脑中的抑制性神经传递。gaba a RS主要由两个α亚基,两个β亚基和一个来自中央氯化物(Cl-)选择性通道的d的另外一个亚基组成。已确定了多个GABA A R亚基亚型和剪接变体。GABA A R的每个变体都表现出不同的生物物理和药理特性。几种化合物会对GABA A r积极或负面调节。广泛使用的阳性GABA A R调节剂包括苯二氮卓类药物(抗焦虑和抗惊厥药),全一麻醉药(如尿素等挥发性剂,以及巴比妥类药物等静脉内药物,如抗苯甲酸酯和丙泊屈球和丙泊屈球),一些抗凝胶酒精,一些抗脉冲,抗脉冲和神经剂,并具有神经性的剂。每种药物的结合位点截然不同。麻醉药物增强了受体介导的突触传播,从而打断了丘脑皮层传播,从而控制了睡眠 - 唤醒模式。理解GABA A R为在治疗神经系统疾病和全身麻醉方面开发高度特定的药物奠定了基础。GABA A R功能的异常已与几种神经疾病有关,例如睡眠障碍,癫痫发作,抑郁,认知功能,受伤后的神经系统恢复和神经可塑性。
肥胖与组织代谢与调节葡萄糖稳态相关的低度炎症的激活。肠道微生物群已与肥胖期间在肥胖期间观察到的炎症反应有着广泛的联系,该反应强调了肥胖期间宿主免疫和代谢之间的互连。肠道菌群以及肠道屏障功能的改变,为在先天免疫细胞和非免疫细胞中表达的模式识别受体(PRR)提供了无数的循环配体。PRR依赖性信号传导驱动了广泛基因的表达,这取决于靶向细胞的特定功能和生理环境。PRRS激活可能会对宿主代谢炎症产生相反的影响。核苷酸结合寡聚结构域1(NOD1)或含有3(NLRP3)活化的NOD样受体吡啶结构域可促进代谢炎症和胰岛素耐药性,而NOD2激活可改善肥胖症期间胰岛素敏感性和胰岛素敏感性。Toll样受体(TLRS)2、4和5还对代谢组织显示了特定的影响。TLR5有效的小鼠易于肥胖,并且响应高脂饮食而受到炎症,而将TLR5配体(伏氨酸脂蛋白)注射对饮食诱导的肥胖具有保护作用。对相反的TLR2和4个激活在肥胖期间与有害代谢结果有关。TLR4激活通过源自肠道微生物群的分子激活来增强代谢炎症和胰岛素耐药性和TLR2的激活,促进了肥胖的发作。现在很明显,细菌衍生分子对PRR的激活在宿主代谢调节中起关键作用。prr在各种细胞类型中表达,使对肥胖症中PRRS激活/沉默和代谢炎症之间关系的机制的理解变得复杂。本评论概述了当前对肠道微生物群和PRR之间相互关系的理解,重点是其对肥胖和相关代谢疾病的后果。
背景:类黄酮菊花会在大鼠中产生快速和持久的抗焦虑和抗抑郁样作用。然而,尚不清楚低剂量和高剂量的克莱辛是否通过伽马 - 氨基丁酸亚型A(GABA A)受体产生差异性抗吸收性效应。因此,这项工作的目的是比较一项纵向研究中的低剂量和高剂量的克莱辛对抑郁症的影响。此外,将克莱辛与血清素能氟西汀和γ-氨基丁酸(GABA)Ergic Allopregnanolone进行了比较,并且还研究了慢性治疗后与GABA A受体的参与。方法:将雄性Wistar大鼠分配为五组(n = 8):媒介物,1 mg/kg chrysin,5 mg/kg chrysin,1 mg/kg氟西汀和1 mg/kg的杂种。在第一个实验中,每天注射治疗,并在治疗的0、1、14和28天和最终治疗后48小时评估对运动活性和强制游泳测试的影响。在第二个实验中,将类似的组用注射1 mg/kg picrototoxin进行28天治疗,以研究GABA A受体的作用。根据实验设计,将方差(ANOVA)测试的单向分析(ANOVA)用于统计分析,p <0.05设置为显着性的标准。结果:在这两个实验中,治疗都没有改变运动活性。然而,在强制游泳测试中,低剂量的克莱辛,异烷醇酮和氟西汀逐渐产生抗抑郁药样作用,并在治疗后48小时维持这种作用,除了低剂量的Chrysin。picrotoxin阻断了低剂量克莱辛产生的抗抑郁药样作用,但不会影响高剂量的克莱辛,异源性异烷醇或氟西汀产生的抗抑郁药。结论:低剂量和高剂量的克莱辛引起的差异抗抑郁样作用是时间依赖的。低剂量的金沙蛋白会产生快速的抗抑郁样作用,而高剂量的克莱斯蛋白会产生延迟但持续的效果,甚至在戒断后48小时。高剂量克莱辛的作用与Allopregnanolone和Fluoxetine观察到的作用相似。低chrysin的抗抑郁样作用的机制似乎是Gabaergic的,而高剂量的Chrysin的作用可能涉及其他与5-羟色胺能系统有关的神经传递和神经调节系统。
引言人类的自身免疫性疾病在女性中比男性更常见[1]。在传染病的产生中也发现了这种性二态性[2,3]。基于性别的免疫疗法反应变异已记录在[4,5]中。几份报告表明,与健康雄性相比,健康女性中介导边际耐受性和防御自身免疫性的CD4 + CD25 + FOXP3 + T调节细胞的数量显着降低[6]。T细胞的一个称为调节T细胞(Tregs)的T细胞是维持免疫稳态和限制不受控制的免疫反应所必需的。Tregs表现出某些细胞表面标记,例如CD4,CD25和转录因子Foxp3 [7]。Treg细胞用于阻断免疫反应,因为它们可以抑制效应T细胞,B细胞和抗原呈现细胞增殖和执行其效应子活性[8]。其他研究表明,淋巴细胞表达雌激素和雄激素受体(ER和AR),这可能表明类固醇性激素,雌激素和雄激素可以直接影响细胞在免疫反应中复杂的功能[8,9]。在小鼠模型中,雌二醇(E2)已被证明增加了调节性CD4 + CD25 +室[10]。同样,E2和雄激素的双重耗竭导致CD4 + CD25- T细胞种群的下降,包括CD4 + CD25 + Treg细胞,而替代雄激素替代则阻止了大鼠模型的减少[11]。临床研究表明,患有雄激素不敏感综合征的患者患哮喘的风险高于对照患者,并且雄激素和AR信号转化改善了肺功能并降低了哮喘的症状[12]。
摘要:在本文中,我们提出了一种可概括且多功能的策略,以设计合成的DNA配体结合设备,可以对其进行编程,以在定义的温度下加载和释放特定的配体。我们通过重新设计两个基于DNA的受体来做到这一点:一种基于三个基于DNA的基于DNA的受体,该受体识别特定的DNA序列和ATP结合适体。通过控制与连接两个配体结合域的接头相关的熵,可以调节这些受体负载/释放其配体的温度。一组具有可调和可逆温度依赖性的受体的可用性允许实现复杂的负载/释放行为,例如在宽温度范围内持续的配体释放。类似的可编程响应性合成配体结合设备可以在药物输送和智能材料的生产等应用中具有实用性。关键字:温度响应性纳米载体,内在障碍,熵,分子开关,DNA纳米技术
背景嵌合抗原受体(CAR)T细胞由于慢性抗原刺激引起的CAR-T功能障碍而在实体瘤中具有LIM临床功效,并且在肿瘤微环境中抑制信号。细胞因子介导的信号通过JANUS-激酶信号换能器和转录激活因子(JAK/STAT)途径已显示可调节T细胞分化,并增加效应子功能和持久性。我们假设可以部署合成生物学方法来确定通过调节特定JAK/STAT活性来改善治疗性T细胞功能的合成受体。在没有外部配体(称为合成途径激活剂(SPA))的情况下,旨在参与构成型JAK/Stat信号的合成受体库,并筛选为增强工程CAR-T细胞的抗肿瘤活性的能力。我们在集成的电路T细胞(ICT)中表达了Spa库,它们是表达逻辑门并通过非病毒CRISPR介导的转基因敲击生成的工程T细胞。我们通过流式细胞仪测量了急性和慢性肿瘤挑战测定法,cytokine产生,cyto-Kine产生,STAT磷酸化谱以及效应子/记忆表型的细胞毒性。随后在鼠异种移植肿瘤模型中测试了表达铅SPA的逻辑门构建体,以评估抗肿瘤功效和药代动力学。结果某些合成途径激活剂(称为I类水疗中心)表明,在体外慢性肿瘤挑战测定中,抗肿瘤功效提高,保留效应子功能,并在慢性抗原博览会上保持了茎的标记。这种改善的体外抗肿瘤功效转化为异种移植实体瘤模型中改善的细胞扩张和效力:表达SPA的细胞的剂量明显低于对照ICT细胞的剂量明显低于剂量。重要的是,尽管它们增加了增殖潜力,但表达水疗中心的ICT并未表现出细胞因子独立的产物,并在体内降低了肿瘤清除率。结论我们已经开发了一类SPA,可以参与组成型Stat信号传导,并显着增强临床前测定中治疗性T细胞的抗肿瘤活性。SPA-表达T细胞表现出增加的效应功能的膨胀和保留,从而完全清除了非常低的T细胞剂量的大型异种移植肿瘤。我们的铅I类水疗中心已纳入AB-2100,这是一种综合电路T细胞候选药物,旨在治疗透明细胞肾癌(CCRCC)。
1,马萨诸塞州波士顿的杨百翰和妇女医院乳房外科司。2乳房肿瘤计划,马萨诸塞州波士顿的达纳 - 法伯杨百翰癌症中心。3德克萨斯州休斯敦的德克萨斯大学医学博士安德森癌症中心造血生物学与恶性系。4哈佛医学院,马萨诸塞州波士顿。5,土耳其安卡拉Hacettepe大学医学院。 6麦戈文医学院,德克萨斯州休斯敦的德克萨斯大学健康科学中心。 7研究院癌症治疗系,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 8 Sheikh Khalifa Bin Zayed Al Nahyan个性化癌症治疗研究所,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 9基因组医学系,德克萨斯州医学博士安德森癌症中心,德克萨斯州休斯敦。 10个生物信息学和计算生物学系,德克萨斯州安德森癌症中心,德克萨斯州休斯敦。 11医疗部5,土耳其安卡拉Hacettepe大学医学院。6麦戈文医学院,德克萨斯州休斯敦的德克萨斯大学健康科学中心。 7研究院癌症治疗系,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 8 Sheikh Khalifa Bin Zayed Al Nahyan个性化癌症治疗研究所,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 9基因组医学系,德克萨斯州医学博士安德森癌症中心,德克萨斯州休斯敦。 10个生物信息学和计算生物学系,德克萨斯州安德森癌症中心,德克萨斯州休斯敦。 11医疗部6麦戈文医学院,德克萨斯州休斯敦的德克萨斯大学健康科学中心。7研究院癌症治疗系,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 8 Sheikh Khalifa Bin Zayed Al Nahyan个性化癌症治疗研究所,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 9基因组医学系,德克萨斯州医学博士安德森癌症中心,德克萨斯州休斯敦。 10个生物信息学和计算生物学系,德克萨斯州安德森癌症中心,德克萨斯州休斯敦。 11医疗部7研究院癌症治疗系,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。8 Sheikh Khalifa Bin Zayed Al Nahyan个性化癌症治疗研究所,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。 9基因组医学系,德克萨斯州医学博士安德森癌症中心,德克萨斯州休斯敦。 10个生物信息学和计算生物学系,德克萨斯州安德森癌症中心,德克萨斯州休斯敦。 11医疗部8 Sheikh Khalifa Bin Zayed Al Nahyan个性化癌症治疗研究所,德克萨斯州安德森大学癌症中心,德克萨斯州休斯敦。9基因组医学系,德克萨斯州医学博士安德森癌症中心,德克萨斯州休斯敦。10个生物信息学和计算生物学系,德克萨斯州安德森癌症中心,德克萨斯州休斯敦。11医疗部
T 细胞急性淋巴细胞白血病 (T-ALL) 和 T 细胞淋巴细胞淋巴瘤 (T-LBL) 是罕见的侵袭性血液系统恶性肿瘤。目前的治疗包括强化化疗,总生存率为 80%,但伴有严重的毒副作用。此外,10-20% 的患者仍死于复发或难治性疾病,这为更具体、更有针对性和毒性更低的治疗策略提供了强有力的理由。在这里,我们报告了 T-LBL 患者中的一种新型 MYH9::PDGFRB 融合,并证明这种融合产物具有组成活性,足以在体外和体内驱动致癌转化。将我们的分析更广泛地扩展到 T-ALL,我们发现一个 T-ALL 细胞系和多个患者来源的异种移植模型在没有融合的情况下具有 PDGFRB 过度活化,TLX3 和 HOXA T-ALL 分子亚型中 PDGFRB 表达较高。为了针对这种 PDGFRB 过度激活,我们评估了选择性 PDGFRB 抑制剂 CP-673451 在体外和体内的治疗效果,并证明了受体过度激活时的敏感性。总之,我们的工作表明,PDGFRB 的过度激活是 T-ALL/T-LBL 的致癌驱动因素,并且筛查 T-ALL/T-LBL 患者的磷酸化 PDGFRB 水平可以作为 PDGFRB 抑制的生物标志物,作为其治疗方案中的一种新型靶向治疗策略。