新颖的增强学习算法或对现有的算法进行的改善,通常通过评估其在基准环境上的性能来概括,并将其与不断变化的标准算法集进行比较。但是,尽管有许多需要改进的要求,但经验实践仍会产生误导或不支持的主张。进行不合标准的做法的一个原因是进行严格的基准测试实验需要基本计算时间。这项工作投资了严格的实验设计中计算成本增加的来源。我们表明,严格的性能基准可能会产生通常很重要的计算成本。因此,我们主张使用附加实验范式克服基准测试的局限性。
摘要本文研究了意大利经济和财政决策的最新发展。它是通过在三个更广泛的方面的意大利民族复苏和弹性计划(NRRP)的情境化来进行上下文,这些变化是意大利政治经济学的特征:(1)该国在货币联盟(EMU)内的保守财政轨迹; (2)面对大流行和能源危机,采取的扩张性经济政策; (3)意大利“双重混合经济”的特征。文章认为,由于EMU,意大利不断运行的初级预算盈余高于其EMU同行。以来,自Covid-19和EMU约束的放松以来,意大利的财政立场就变成了扩张。这为各种社会ECO的官员政策提供了空间,可以部分保护家庭和企业免受危机的影响。然而,随着财政保守主义的回归,NRRP现在代表了镇上唯一试图解决意大利双重杂种的游戏,其特征是国家的能力和供应方面的机构不一致以及两个直径对立的北部和南部地区的区域增长方案。
用于人工智能和神经形态计算的硅光子学 Bhavin J. Shastri 1,2、Thomas Ferreira de Lima 2、Chaoran Huang 2、Bicky A. Marquez 1、Sudip Shekhar 3、Lukas Chrostowski 3 和 Paul R. Prucnal 2 1 加拿大安大略省金斯顿皇后大学物理、工程物理和天文学系,邮编 K7L 3N6 2 普林斯顿大学电气工程系,邮编 新泽西州普林斯顿 08544,美国 3 加拿大不列颠哥伦比亚大学电气与计算机工程系,邮编 BC 温哥华,邮编 V6T 1Z4 shastri@ieee.org 摘要:由神经网络驱动的人工智能和神经形态计算已经实现了许多应用。电子平台上神经网络的软件实现在速度和能效方面受到限制。神经形态光子学旨在构建处理器,其中光学硬件模拟大脑中的神经网络。 © 2021 作者 神经形态计算领域旨在弥合冯·诺依曼计算机与人脑之间的能源效率差距。神经形态计算的兴起可以归因于当前计算能力与当前计算需求之间的差距不断扩大 [1]、[2]。因此,这催生了对新型大脑启发算法和应用程序的研究,这些算法和应用程序特别适合神经形态处理器。这些算法试图实时解决人工智能 (AI) 任务,同时消耗更少的能量。我们假设 [3],我们可以利用光子学的高并行性和速度,将相同的神经形态算法带到需要多通道多千兆赫模拟信号的应用,而数字处理很难实时处理这些信号。通过将光子设备的高带宽和并行性与类似大脑中的方法所实现的适应性和复杂性相结合,光子神经网络有可能比最先进的电子处理器快至少一万倍,同时每次计算消耗的能量更少 [4]。一个例子是非线性反馈控制;这是一项非常具有挑战性的任务,涉及实时计算约束二次优化问题的解。神经形态光子学可以实现新的应用,因为没有通用硬件能够处理微秒级的环境变化 [5]。
b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二元通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”
b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二进制通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”