2. 分流器非常耐用。它们很少因碰撞或跌倒而发生故障。应该允许患有分流器的儿童参加体育课和运动。他们可以参加课间休息。 3. 患有分流器的儿童应避免玩磁铁。在科学课上,他们不得使用磁铁积木玩具或接触磁铁。将可编程阀门置于强磁铁下会改变阀门的设置。 4. 患有分流器的儿童应避免便秘。便秘导致分流器远端部分受压会阻碍正常引流。 5. 请注意,有些患有脑积水的儿童在手眼协调和精细运动技能方面存在困难。书写可能很困难。 6. 有些孩子可能会出现一定程度的学习障碍。鼓励进行 IEP 评估。并非所有患有脑积水的儿童都是如此。 • 有学习障碍的学生可能会否认他们的特殊需要,也不愿意寻求帮助。请耐心等待并尊重他们的需求。 • 有些孩子的行为问题可能与学习困难有直接关系。这经常被误解,孩子被贴上“不良行为”问题的标签。 • 有些孩子可能缺乏组织能力。他们可能需要额外的结构。 • 早期识别是识别学习问题的关键。建议家庭进行全面评估对于为孩子获得适当的资源非常重要。 7. 教师和护士必须经常与家长沟通,了解学生的学习进度和他们发现的任何新变化。 8. 患有脑积水和分流术的儿童应每年进行一次眼科检查。 9. 可编程的分流术必须在进行任何 MRI 后由神经外科医生重新编程。MRI 机器中的磁铁能够改变阀门设置。 10. 微波炉、无线电话、高压线、电动机或变压器不会影响阀门。 11. 机场安检机不会改变阀门设置。 12. 不建议乘坐某些游乐设施和过山车。 13. 鼓励年龄较大的学生和家长随身携带标有品牌、型号、序列号和当前阀门设置的信息卡。这些信息卡应由神经外科医生提供。14. 生产不同植入式分流器的公司保证其数据,I pad 和计算机设备中包含的磁铁不会影响在课堂上使用。他们建议学生不要拿着该设备并将其放在分流阀上。在课堂内使用这些设备是安全的。
一名 61 岁女性患者,因持续疲劳被诊断为右上肺叶转移性腺癌,伴有局部淋巴结转移、多发性肺转移和右额叶脑转移(根据 PET-CT 发现的临床分期:cT3 cN2 cM1c)。肿瘤 DNA 的下一代测序(Ion AmliSeq Colon and Lung Research Panel v2、Ion Torrent 平台、热点区域分析)显示 KRAS p.G12C (c.34G>T) 突变,但没有其他靶向改变。PD-L1 的免疫组织化学染色在肿瘤细胞中不到 1%。一线全身治疗采用顺铂、培美曲塞和帕博利珠单抗,总体获得部分缓解,包括脑转移完全缓解,2018 年 9 月开始使用培美曲塞和帕博利珠单抗维持治疗。2019 年 3 月,由于进行性多发性神经病变,停用培美曲塞。2019 年 6 月,患者肺部出现进展,因咯血而需要止血放射治疗,帕博利珠单抗也停用。单独的脑转移继续缓解。2019 年 11 月,患者肺部再次出现进展,并出现有症状的脑部进展,小脑蚓部出现新的病变,导致导水管受压和连续性脑积水。植入脑室腹腔分流术,小脑蚓部病变用立体定向放射治疗;进行性肺部病变用放射治疗;此外,由于病情稳定,且持续控制疾病超过一年,因此恢复使用派姆单抗治疗。然而,2021 年 2 月,患者小脑已知病变进展(临床意义不大),左脑室周围白质出现新转移,肺部进一步进展。2021 年 3 月开始使用多西他赛,肺部和脑部病变进展,右额叶和颞叶出现新病变,这是四个周期后的最佳反应(见图 1 治疗时间顺序示意图)。2021 年 6 月,开始口服 960 毫克每日 sotorasib 治疗。经过 6 周的 sotorasib 治疗后,不仅肺部,而且未治疗的脑转移瘤都出现了令人印象深刻的治疗反应,这种反应持续了 5 个月(见图 2)。由于全身进展,停止使用 sotorasib 治疗,并于 2021 年 11 月底开始使用吉西他滨治疗。2021 年 12 月初,患者出现症状性脑部进展,行为改变和精神萎靡,并进行了神经外科干预,包括开颅术和肿瘤切除术。吉西他滨的全身治疗持续到 2022 年 2 月,并因疾病进展而停止。患者于 2022 年 3 月接受培美曲塞进一步全身治疗(再次治疗),随后于 2022 年 4 月接受卡铂和紫杉醇治疗。此外,患者于 2022 年 4 月进行了全脑放射治疗。随着病情进一步进展,患者自 2022 年 5 月起接受最佳支持治疗。
Malwadi,印度浦那,电子邮件:rritesh126@gmail.com暴民。 :8830049499萨特瓦,拉贾,多摩是三个主要的心理特性。 在其中,萨特瓦(Satwa)是一个古纳(Guna),拉贾(Raja)和塔玛(Tama)被描述为Manodosha。 即 当占主导地位时,它们是不良属性。 这些Raja和Tama Properties导致Mano Vikar属于:Kama,Krodha,Lobha,Moha,Shoka,Shoka,Harsha,Chinta,Chinta,Udwega,Bhaya等。 1个障碍中解释的法力或思维的功能。 Chintya,Vicharya,Oohyam,Dhyeyam,Sankalp。 在Charak Samhita Sutrasthana- Tisrishaniya adhyay中,我们对Manas Hetu或压力的原因非常精确。 2很难质疑我们大多数人以非常快速的速度生活。 压力是一种对事件做出反应时会产生的感觉。 这是一种挑战并准备以重点,力量和耐力来应对艰难局势的方式。 这种引起压力的事件被称为压力源。 焦虑和压力的人不过是在压力下。 首先,大多数情况下,这些人可能会表现出症状“失食”,换句话说,它会导致agnimandya。 在如此焦虑的状态下,人们无法健康且易于获得的食物,例如垃圾食品。 这可以在两餐之间经常采取一种巧克力或糖果的形式。 也可以看到饮酒或吸烟的摄入量。 在这里,人们可以意识到,在大多数情况下,压力是造成不当的Aahar Vidhi Vidhan的根本原因,改变了生活方式和饮食习惯。 压力因素是相同的,但它以不同的面孔来到您身边。Malwadi,印度浦那,电子邮件:rritesh126@gmail.com暴民。:8830049499萨特瓦,拉贾,多摩是三个主要的心理特性。在其中,萨特瓦(Satwa)是一个古纳(Guna),拉贾(Raja)和塔玛(Tama)被描述为Manodosha。即当占主导地位时,它们是不良属性。这些Raja和Tama Properties导致Mano Vikar属于:Kama,Krodha,Lobha,Moha,Shoka,Shoka,Harsha,Chinta,Chinta,Udwega,Bhaya等。1个障碍中解释的法力或思维的功能。Chintya,Vicharya,Oohyam,Dhyeyam,Sankalp。在Charak Samhita Sutrasthana- Tisrishaniya adhyay中,我们对Manas Hetu或压力的原因非常精确。2很难质疑我们大多数人以非常快速的速度生活。压力是一种对事件做出反应时会产生的感觉。这是一种挑战并准备以重点,力量和耐力来应对艰难局势的方式。这种引起压力的事件被称为压力源。焦虑和压力的人不过是在压力下。首先,大多数情况下,这些人可能会表现出症状“失食”,换句话说,它会导致agnimandya。在如此焦虑的状态下,人们无法健康且易于获得的食物,例如垃圾食品。这可以在两餐之间经常采取一种巧克力或糖果的形式。也可以看到饮酒或吸烟的摄入量。在这里,人们可以意识到,在大多数情况下,压力是造成不当的Aahar Vidhi Vidhan的根本原因,改变了生活方式和饮食习惯。压力因素是相同的,但它以不同的面孔来到您身边。对医生或议员来说,识别同样的挑战始终是一个挑战。许多受压力的人转向食物作为舒适的来源。在这段时间内,它导致Rasavaha Srotas Dushti。
bcs理论:探索其在高温超导体中的基本原理和挑战Bardeen-Cooper-Schrieffer(BCS)理论是凝聚态物理学的一个关键概念,为自1957年以来提供了超导性的显微镜解释。这种现象涉及在临界阈值以下的温度下进行电力无电的材料。BCS理论的关键在于库珀对的形成,尽管它们是自然的排斥,但它们是一对电子。在低温下,这种配对是通过声子介导的吸引力在超导体的晶格结构中促进的。基态和首先激发状态之间的能量差距在维持超导性中起着至关重要的作用。BCS理论在各个领域都具有深远的影响,包括使用MRI机,粒子加速器和量子计算的医学成像。它的影响超出了对核物理,天体物理学和中子星研究的超导性,赢得了创作者约翰·巴丁(John Bardeen),莱昂·库珀(Leon Cooper)和罗伯特·施里弗(Robert Schrieffer),1972年诺贝尔物理学奖。然而,BCS理论面临着在1980年代发现的高温超导体的挑战。这些材料在温度下表现出超导性能,远远高于BCS理论的预测,这表明了另一种机制。研究人员正在探索理论,例如BCS-BEC交叉和磁波动,以了解这些现象。非常规超导体由于其不同的对称特性而构成挑战。这导致了新的理论模型的发展,这些模型试图扩展或补充原始的BCS框架。超导性的应用导致了MRI和粒子加速器以外的技术进步,包括材料科学方面的重大发展。bcs理论是理解超导性的基本框架,尽管局限性地解释了高温和非常规的超导性,但仍对其性质和指导技术创新提供了深刻的见解。该理论将超导性描述为由cooper Pairs Pairs Pairs的核物理学引起的微观效应。Bardeen,Cooper和Schrieffer于1957年提出了BCS理论,于1972年在1972年获得了诺贝尔物理学奖。在1950年代中期,超导性的势头取得了进展,从1948年的1948年论文提出的一致性是由于现象学方程而提出的一致性。温度和压力具有显着的关系,温度受压力变化的强烈影响。虽然BCS理论被广泛接受为超导性的基本解释,但人们认为其他因素正在发挥作用,有助于这种现象。这些潜在的机制尚未完全理解,甚至可能在低温下控制某些材料的行为。在极低的温度下,费米表面附近的电子变得不稳定,从而形成了库珀对。在常规超导体中,这种吸引力通常归因于电子 - 武器相互作用。这种现象首先是由库珀观察到的,他证明了结合是在有吸引力的潜力的情况下发生的,无论其强度如何。相比之下,BCS理论仅要求潜在具有吸引力,而无需指定其起源。该框架将超导性解释为库珀对凝结产生的宏观效应,库珀对表现出了一些玻色子性能。在足够低的温度下,这些对可以形成大型的玻色网凝结物。通过使用Bogoliubov变换,尼古拉·博格洛博夫(Nikolay Bogolyubov)也独立地开发了超导性的概念。在许多情况下,通过与振动晶体晶格(Phonons)的相互作用,间接引起配对所需的电子之间的有吸引力的电子相互作用。此过程涉及一个吸引晶格中附近正电荷的电子,导致另一个电子移入较高的正电荷密度区域。随着这些电子的相关性,它们会形成高度集体的冷凝物。打破一对所需的能量与超导体内所有对中的所有对所需的能量密切相关,从而使外力更难破坏配对。这种集体行为对于理解超导性至关重要,因为它使电子能够抵抗外部影响并保持通过超导体的恒定流动。BCS理论从假设电子之间的相互作用的假设开始,这可以克服库仑排斥。高温超导性的行为很复杂,尚未完全理解。虽然这种吸引力通常是间接的,这是由电子晶格耦合引起的,但基本机制对于理解理论的结果并不是至关重要的。实际上,在没有这种相互作用的系统中观察到了库珀对,例如同质磁场下的费米亚的超速气体。bcs理论提供了金属中量子力学多体状态的近似,从而通过有吸引力的相互作用形成了库珀对。在正常状态下,电子独立移动;但是,在BCS状态下,由于吸引力的潜力降低,它们被绑定在一起。形式主义是基于波函数的变异ansatz,后来证明在对的密集极限中是精确的。尽管取得了重大进展,但稀释和致密政权之间的跨界仍然是一个空旷的问题,吸引了超低气体领域的关注。BCS理论的关键方面包括带隙,临界温度和同位素对超导性的影响的证据。测量值,例如临界温度附近的热容量的指数增加支持超导材料中能量带镜的存在。随着温度升高的结合能的降低表明电子与晶格之间的相互作用逐渐减弱。必须通过改变所有其他对的能量来打破一个能量的差距。与普通金属不同,在正常金属中,电子状态可以随着少量的添加能量而变化,当超导性停止时,该能隙在过渡温度下消失。BCS理论提供了表达式,以表明差距在费米水平上以吸引力和单粒子密度的强度生长。它还解释了当材料进入超导状态时状态的密度如何变化,而在费米水平上没有电子状态。在隧道实验和超导体的微波反射中,最直接观察到了这种能隙。BCS理论预测了能量差距对温度的依赖性,包括其在零温度下的通用值。在1950年,两个独立的小组在使用不同的汞同位素时发现了超导性的同位素效应。这一发现很重要,因为它揭示了同位素的选择可能会影响材料的电性能和晶格振动的频率。同位素效应表明,超导性与晶格的振动之间的联系,后来成为BCS理论的关键组成部分。由其中一个组进行的Little -Parks实验提供了早期的迹象,表明库珀配对在超导性中的重要性。通过对二吡啶镁等材料等材料的研究进一步探讨了这一原理,该材料被认为是BCS超导体。BCS理论发展中的关键里程碑包括John Bardeen,Leon Cooper和John Schrieffer的作品,后者发表了有关库珀对中电子超导性显微镜理论和电子结合能的论文。他们的工作为我们理解超导性及其与晶格振动的关系奠定了基础。后来的发现,例如Bednorz和Müller在1986年的发现,揭示了某些材料中高温超导性的潜力。最近,研究继续探索这种现象,并在2011年报告了值得注意的发现。BCS理论是理解超导性的基石,它源于W. A.和Parks R.D.在1962年发表的超导缸中量子周期性的观察。这一理论是由莱昂·库珀(Leon Cooper),约翰·巴丁(John Bardeen)和J.R. Schrieffer在1950年代后期的《绑定电子对的开创性论文and syproscopic理论》中进一步开发的。他们的工作为理解某些材料在比温度以下时如何表现出零电阻的基础奠定了基础。Schrieffer的书《超导性理论》(1964)以及其他文本,例如廷克汉姆(Tinkham)的“超导性概论”和de gennes的“金属和合金的超导性”,提供了对BCS理论的全面解释。该理论已被广泛接受,并且仍然是研究的主题,其应用在包括量子材料和超导体 - 绝缘体跃迁在内的各个领域。对该主题的著名作品的引用包括库珀的“堕落的费米气体中的绑定电子对”,巴尔丁的“超导性显微理论”和“超导性理论”。BCS理论已经进行了广泛的研究,许多研究人员为其发展做出了贡献。体育学提供了超导性的基础知识的介绍,而舞蹈类比为Bob Schrieffer所描述的BCS理论提供了创造性的解释。超导性的研究仍然是一个积极的研究领域,并持续努力理解和应用BCS理论中概述的原则。