编码基因的组蛋白中的体细胞突变导致表观遗传景观的严重改变。弥漫性内在的蓬托胶质瘤(DIPG)是儿科高级神经胶质瘤(PHGG),是治疗最具挑战性的癌症之一,只有1%的生存5年。由于脑干中的位置,DIPGs很难切除并迅速变成致命疾病。超过80%的DIPGS赋予编码组蛋白3变体(H3.3或H3.1/H3.2)的基因中的突变,并在27(H3K27M)的位置将赖氨酸替代为蛋氨酸取代。这会导致H3K27三甲基化的全球降低,H3K27乙酰化增加以及基因表达的广泛致癌变化。表观遗传修饰的药物出现为有希望的候选DIPG,其中组蛋白脱乙酰基酶(HDAC)抑制剂在临床前和临床研究中占据主导地位。但是,一些数据显示DIPG对最研究的HDAC抑制剂Panobinostat的抗性不断发展,并强调了进一步研究其作用机理的必要性。一项新的有力研究线探索了可以靶向表观遗传诱导的DIPG染色质变化并增强单个药物的抗癌反应的多种抑制剂的同时使用。在这篇综述中,我们总结了针对旨在靶向表观遗传失调的表达H3K27M的PHGG的治疗方法,并突出了有希望的组合药物治疗。我们评估了PHGGS临床试验中已经在临床试验中的表观遗传药物的有效性。对H3K27M-表达PHGG的表观遗传脆弱性的不断扩展的理解提供了新的特定于肿瘤的靶标,为治疗提供了新的可能性,并希望为这种致命的疾病提供预防。
皮肤微生物组由多样化的微生物及其相关产品组成。这些微生物直接与宿主细胞相互作用,并受到皮肤免疫反应和外部因素(例如抗生素)的影响。皮肤微生物组的好处包括在早期生命中建立免疫学耐受性,抗菌药物的产生和免疫调节的代谢产物,促进伤口愈合,增强屏障功能以及迁移,代谢性,代谢和皮肤细胞功能的调节。相比之下,皮肤微生物组中的病原体和病原体会引起疾病,并与皮肤疾病有关(图1)。皮肤微生物组和宿主之间的串扰非常复杂,并且仍然存在许多知识差距。了解管理皮肤微生物生态的“规则”及其失调对宿主免疫的影响将是推进这一领域并意识到使用微生物及其代谢物用于治疗目的的希望的关键。
根据最新的世界卫生组织统计数据,心血管疾病(CVD)是全球死亡的主要原因之一。由于主要危险因素的患病率上升,例如糖尿病和肥胖,因此CVD的负担预计在未来几十年中会恶化。肥胖是CVD的主要且一致的危险因素,但外周脂肪仓库与心脏之间的潜在病理分子通信仍然知之甚少。脂肪组织(AT)是人体中的主要内分泌器官,复合细胞产生和分泌激素,细胞因子和非编码RNA进入循环中,以改变包括心脏在内的多个器官的表型。ecardial at(eat)是一种与心肌直接接触的沉积物,因此可以通过机械和分子均值影响心脏功能。,居民和招募的免疫细胞包括一种重要的脂肪细胞类型,可以在肥胖症的背景下创建促炎环境,有可能导致系统性的炎症和心肌病。脂肪到心串扰的新机制,包括受非编码RNA和细胞外囊泡管辖的机制,正在研究加深对这一高度常见危险因素的理解。在这篇综述中,将讨论AT和心脏之间的分子串扰,重点是内分泌和旁分泌信号传导,免疫细胞,炎症细胞因子以及通过非编码RNA进行的 - 器之间的通信。
摘要:Glypicans与肿瘤行为的各个方面有关,并且在不同的癌症中提出了它们的治疗价值。在这里,我们通过功能基因组学和转录组分析在广泛的癌症中系统地评估了GPC4对癌症进展的影响。使用TCGA癌症患者数据的生存分析揭示了GPC4表达在各种癌症类型中的不同作用,发现GPC4表达水平升高,与癌症依赖性的较差和有利的预后相关。通过遗传扰动研究对GPC4在胶质母细胞瘤和非小细胞肺腺癌中的作用的详细研究表现出对这些癌症的影响,其中GPC4与CRISPR/CAS9的敲除gpc4降低了胶质母细胞瘤的增殖,并增强了Lung adenaCarcarcarcarcarcarcarcarcarcarcincarincarcarcarcincarncarcarcarcarcarcinsy and and Crignct andc runge的效果。此外,在GPC4敲除胶质母细胞瘤细胞中GPC4的过度表面恢复了增殖,表明其在这种癌症类型中的有丝分裂作用。此外,对TCGA患者数据的生存分析证实了这些发现,揭示了GPC4水平升高与胶质母细胞瘤预后不良之间的关联,同时表明肺癌患者的结果有利。最后,通过转录组分析,我们试图将作用机理分配给GPC4,因为我们发现它与细胞周期控制和生存核心途径有关。分析表明,肿瘤基因的上调,包括FGF5,TGF-β超家族成员和ITGA-5在胶质母细胞瘤中的上调,它们在肺腺癌患者中被下调。我们的发现阐明了GPC4在癌症中的多效效应,强调了其作为推定的预后生物标志物的潜力,并以依赖癌症的方式表明其治疗意义。
我要感谢 José Neira 和 Silvère Bonnabel 教授让我有幸同意报告这篇论文,感谢审稿人 Samia Bouchafa、Pascal Vasseur 和 Michel Dhome 教授对我的工作和研究感兴趣。决定授予我医师职称。我要感谢我的论文导师 Guy Le Besnerais。他非常投入、要求严格、坦率并且总是关心我,他成功地促使我写出一篇好的论文,总是提供明智而有效的建议。我感谢大卫·维西埃,他以他传奇般的热情为这项工作提供了最初的动力,他直到最后都信任我,即使他对所采取的方向有疑问。尽管中小企业的担忧在科学博士学位的学习期间通常很难预测,但我最终拥有了很大的自由和自主权。我要非常感谢 Martial 和 Alexandre:我在论文的技术和科学方面以及其一般行为方面获得了特权。感谢 Martial 与我分享您在视觉里程计和传感器方面的经验、您的幽默感和善良。感谢 Alex 的技术讨论,这使我能够在提供技术细节(通常是枯燥的(肮脏的?))、有用的含义和值得告诉他们的兴趣的同时,提高我的理解。如果没有您精心的校对工作,论文的质量就无从谈起
糖尿病性肾病(DN)是糖尿病最常见的并发症之一,其主要表现是进行性蛋白尿和肾功能异常,最终发展出终阶段肾病(ESRD)。DN的发病机理是复杂的,涉及许多信号通路和分子,包括代谢性疾病,遗传因素,氧化应激,炎症和微循环异常策略。随着医学实验技术的开发,例如单细胞转录组测序和单细胞蛋白质组学,肾细胞相互作用引起的病理改变吸引了越来越多的注意力。在这里,我们回顾了肾细胞之间串扰的特征和相关机制,在DN的发育和进展过程中,肾细胞足细胞,内皮细胞,膜细胞,周膜细胞,周细胞和免疫细胞的特征和相关机制,并突出了其潜在的治疗效应
强相互作用系统中的量子信息动力学,即所谓的量子信息加扰,最近成为我们理解黑洞、奇异非费米液体中的传输以及量子混沌的多体类似物的共同线索。到目前为止,经过验证的加扰实验实现主要集中在由两级量子比特组成的系统上。然而,高维量子系统可能表现出不同的加扰模式,并且预计会使量子信息加扰速率达到推测的速度极限。我们通过实现基于超导量子三元组(三级量子系统)的量子处理器,迈出了访问此类现象的第一步。我们展示了通用两元组加扰操作的实现,并将其嵌入到五元组量子隐形传态协议中。测得的隐形传态保真度 F avg ¼ 0.568 0. 001 证实了即使在存在实验缺陷和退相干的情况下也存在扰乱。我们的远距传物协议与最近在实验室中研究可穿越虫洞的提案相关,它展示了在高维系统中编码信息的量子技术如何利用更大、更连通的状态空间来实现复杂量子电路的资源高效编码。
串扰发生在大多数具有多个量子的量子系统中。它可能导致各种相关和非局部串扰误差,这可能特别有害于耐断层的Quantum误差校正,这通常是局部误差且相对可预测的。缓解串扰错误需要理解,建模和定义它们。在本文中,我们介绍了一个用于串扰错误的综合框架,以及用于检测和本地化的协议。我们给出了严格的串扰误差的偏见,该错误捕获了被称为“ Crosstalk”的各种不同的物理杂物,以及用于无串扰量子处理器的混凝土模型。违反此模型的错误是串扰错误。接下来,我们给出了串扰错误的等效但纯粹的(独立于模型的)定义。使用此定义,我们构建了一种协议,用于通过发现观察到的实验概率之间的条件依赖性来检测多Quit处理器中的一大批串扰误差。这是高度有效的,从某种意义上说,独特的实验数量最多可以在立方体上重新提出尺度,而且通常是四边形的量子数。我们使用2量和6 Quibit Process的模拟演示了协议。
愿耶和华的荣耀永远长存;愿耶和华喜悦自己所作的!(诗篇 104:31)亲爱的基督姐妹兄弟们,当我们开始 2025 年禧年时,我们为救世主的恩赐而欢欣鼓舞,他的诞生是为了向世界揭示上帝无限的爱。在我们日历年的早些时候,主显节庆祝这位伯利恒圣婴的显现,他不仅是以色列的弥赛亚,也是给全人类的礼物。主显节的传统弥撒和时辰礼仪文本庆祝上帝的拯救行动对所有造物产生影响。在东方三博士崇拜的中心故事中,异教徒遇到上帝在圣婴耶稣身上显现的故事,这些研究天空的占星家受到天上一颗星星的指引。主显节的主题在耶稣受洗时的显现中得到了延续,我们看到肉身中的上帝沐浴在约旦河中,他通过这样做使河水变得神圣。基督的诞生和显现使一切造物的壮丽焕然一新。因此,在 2025 年第一天这个特殊的圣诞节期间,我们发布天主教列克星敦教区的《愿祢受赞颂》行动计划是恰当的。该行动计划可以作为今年禧年教区新年决议的一种。我们可能还记得,在《利未记》中关于禧年的圣经立法中,甚至土地也要休耕,让其休息和恢复活力。人们担心不要给土地带来过重的负担,耗尽其肥沃的资源。在宣布我们今年的禧年主题为“希望不会令人失望”的法令中,教皇方济各提醒我们,宽恕和免除债务始终是禧年“恩惠之年”的一部分,正如耶稣本人在拿撒勒犹太教堂的第一次布道中所宣布的那样。教皇告诉我们,我们还可以考虑对那些牺牲了大量自然资源却未能分享其消费给某些国家带来的好处的国家负有“生态债务”。