几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
航空业已见证了许多新型航空电子系统(例如,姿态指示器、无线电导航、仪表着陆系统、近地警告系统)的引入,这些系统旨在克服飞行员外部能见度有限的问题。然而,能见度有限仍然是影响全球航空运营安全和容量的最关键因素。仅在商业航空业,全球超过 30% 的致命事故被归类为可控飞行撞地 (CFIT),即正常运转、机械完好的飞机撞上地形或障碍物,而机组人员由于缺乏外部视觉参考或地形/危险态势感知受损而无法看到。在通用航空业,最大的事故类别是持续飞行进入仪表气象条件,即非仪表等级飞行员继续飞入恶化的天气和能见度,导致视野消失,并可能撞上意外地形或空间迷失方向并失去控制。最后,影响机场延误的最大因素是能见度有限,当天气条件低于目视飞行规则操作时,能见度会降低跑道容量并增加空中交通分离所需的距离。
传统上,船舶纵向强度的评估是通过将甲板或船底的弹性应力与材料屈服强度的分数进行比较来进行的。由于船舶结构中固有的冗余,这会导致高储备能力。剩余强度,即结构损坏后的强度,在设计或维修时很少被考虑。在本报告中,已确定了进行工程分析以评估剩余强度所需的关键要素。重点是评估因“正常操作载荷”而损坏的海洋结构的剩余强度。总结了行业可用于评估断裂和极限强度等损伤的方法。一个示例问题。介绍了一种综合方法在特定船型上对剩余强度评估的应用。