奥布里·阿普格伦(Aubri Applegren)在卡特彼勒公司(Caterpillar Inc.符合该公司在2026年达到双重服务收入的目标,Applegren领导了一支采购团队的计划开发和执行,该团队覆盖了75个供应商,支出巨大的支出。她在2023年实施了20多种策略,并超过了根据合同支出的目标。此外,为了改善一个全球部门的员工经验,Applegren建立了一个员工洞察行动团队。她领导了收集员工反馈并确定改进的障碍,拟议为领导团队批准和承诺的拟议行动,设定了切实的行动和方法,并提出了季度报告。此外,她被任命为买家技能评估和开发计划的计划负责人,从而获得了买家和类别经理的出色反馈。她还领导了一些企业倡议,专注于人才发展和整个领域的长期战略增长。
摘要 — 基于卫星的量子密钥分发 (QKD) 能够实现长距离量子安全通信的密钥传输。该技术的成熟度和工业兴趣不断增加。卫星自由空间光通信的技术准备度也在不断提高。卫星 QKD 系统包括量子通信子系统和经典通信子系统(公共信道)。两者都采用自由空间光学实现。因此,在卫星 QKD 系统设计中,应尽可能地利用强大的协同效应,并实现全光卫星 QKD 系统。在本文中,我们提出了一个这样的系统,将所有光信道定位在 ITU DWDM C 波段中。我们专注于量子和经典信号传输的总体概念设计和光信道设置。系统描述涉及发射器激光终端(Alice 终端)、接收器激光终端(Bob 终端)、公共信道实现、接口 QKD 系统和部署的加密系统的面包板。Alice 终端的设计基础是激光终端开发 OSIRISv3。 Bob 终端的设计基础是地面站开发 THRUST。后者包含自适应光学校正,以实现单模光纤耦合。这使得它能够与几乎任意的量子接收器(如所述实验中使用的 Bob 模块)进行接口。公共信道由双向 1 Gbps IM/DD 系统和调制解调器组成,
抽象抗体 - 药物结合物由与靶抗体相关的有效小分子有效载荷组成。有效载荷必须拥有一个可行的功能组,可以通过该范围连接连接器。连接器 - 附件选项通过羟基连接到有效载荷仍然有限。开发了基于2-氨基吡啶的释放组,以使para-氨基苯甲酸氨基甲酸酯(PABC)连接器稳定地附着到Budesonide的C21-羟基,糖皮质激素受体激动剂。有效载荷释放涉及一系列由蛋白酶介导的二肽-PABC键裂解引发的两个自适应事件。在pH 7.4和pH 5.4的缓冲溶液中的一系列有效载荷中间体确定布德索尼德释放率,从而导致2-氨基吡啶鉴定为首选释放组。 添加聚乙二醇基团改善了接头的亲水性,从而提供了具有合适特性的CD19-甲硝基ADC。 ADC23证明了靶向的布德索德递送到CD19表达细胞,并抑制了小鼠的B细胞激活。布德索尼德释放率,从而导致2-氨基吡啶鉴定为首选释放组。添加聚乙二醇基团改善了接头的亲水性,从而提供了具有合适特性的CD19-甲硝基ADC。ADC23证明了靶向的布德索德递送到CD19表达细胞,并抑制了小鼠的B细胞激活。
颁奖典礼 2023年度研究组优秀奖将颁发给2023年4月至2024年3月期间举行的日本人工智能学会年会上发表的特别优秀的研究论文。 住电株式会社通过其特殊子公司住电Friend株式会社(以下简称“Friend”),主要推进残疾人士的就业。 在本文中,我们报告了与 Friend 合作应用“残疾人参与式主动学习”的案例研究。我们已通知弗兰德的员工,他们的工作迄今为止主要集中在办公室支持任务上,他们将能够通过创建评估我们主要产品(如电线和电缆)的人工智能直接参与设计和质量评估过程。 颁发此奖是为了认可该项目在考虑“未来社会的人工智能”方面的重要性,将其作为创造一个让更多残障人士能够在公司各种任务中发挥积极作用的环境以及有效利用深度学习技术的一项新举措。欲了解更多详细信息,请参阅以下论文。 ■ 使用残疾人参与式主动学习方案对电线电缆产品进行线路追踪和详细质量评估 https://www.jstage.jst.go.jp/article/jsaisigtwo/2023/SAI-048/2023_01/_pdf/- char/ja
¾ 具有三个翼梁和五个翼肋的单体结构 ¾ 机翼蒙皮以 54 英尺的翼尖对翼尖长度固化成一体 ¾ 机翼蒙皮使用糊状粘合剂二次粘合到翼梁和翼肋上 ¾ 通过使用混合编织石墨/铝织物作为所有外表面的表面层来实现防雷 ¾ 使用的材料是 HITEX/E7K8 12K/280 和 145 胶带以及 AS4 E7K8 3K/195 PW 织物。材料鉴定按照军事手册 17 规范进行。进行了层压板和层压板测试,以在冷/干、室温/干、室温/湿和热湿环境条件下产生拉伸、压缩、剪切强度、刚度和极限应变。
摘要 遥感在探测和绘制人类活动在景观中的考古痕迹方面有着悠久而成功的记录。自二十世纪初以来,航空考古的工具和程序逐渐发展,而地球观测遥感经历了技术和方法进步和创新的重大步骤,如今能够以前所未有的精度、分辨率和复杂性监测地球表面。在此过程中获得的大部分遥感数据可能包含有关考古遗址和物体的位置和背景的重要信息。考古学已经开始利用这一巨大潜力,开发基于数字遥感数据和相关工具和程序的考古痕迹探测和绘图新方法。本章回顾了考古遥感和数字图像分析的历史、工具、方法、程序和产品,强调了航空考古和地球观测遥感融合的最新趋势。
1 Arizona大学天文学 /管家天文台,美国亚利桑那大学933 N Cherry Ave,Tucson,Tucson,AZ 85721,USA 2,Carnegie科学研究所的天文台,813 Santa Barbara Street,Pasadena,Pasadena,Pasadena,Pasadena,CA 91101,CA 91101,USA 3 USA 3物理学,Ben-Gurion Sletternation,Ben-Gurion Inservation,Ben-Gurion University of Negev,Negev,p.o. Box 653, Be'er-Sheva 84105, Israel 4 Department of Astronomy, University of Texas, Austin, TX 78712, USA 5 Sorbonne Universit ´e, CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 6 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St.威尔金森大楼,牛津奥克斯1 3RH,英国牛津路10号欧洲南部天文台,Karl-SC Hwarzsc Hild-Str。 2,85748德国Garching 11天体物理学科学部,代码660,NASA Goddard太空飞行中心,8800 Greenbelt Rd。,Greenbelt Rd。,Greenbelt,MD,MD,20771,美国,1 Arizona大学天文学 /管家天文台,美国亚利桑那大学933 N Cherry Ave,Tucson,Tucson,AZ 85721,USA 2,Carnegie科学研究所的天文台,813 Santa Barbara Street,Pasadena,Pasadena,Pasadena,Pasadena,CA 91101,CA 91101,USA 3 USA 3物理学,Ben-Gurion Sletternation,Ben-Gurion Inservation,Ben-Gurion University of Negev,Negev,p.o.Box 653, Be'er-Sheva 84105, Israel 4 Department of Astronomy, University of Texas, Austin, TX 78712, USA 5 Sorbonne Universit ´e, CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 6 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St.威尔金森大楼,牛津奥克斯1 3RH,英国牛津路10号欧洲南部天文台,Karl-SC Hwarzsc Hild-Str。2,85748德国Garching 11天体物理学科学部,代码660,NASA Goddard太空飞行中心,8800 Greenbelt Rd。,Greenbelt Rd。,Greenbelt,MD,MD,20771,美国,
本次演讲的目的有两个。1) 通过介绍社会接受度和类似概念的概念分析和分类,促进人工智能技术等需要跨学科和跨学科研究的领域的合作与交流。2) 引入这种分类将澄清在 ELSI 和社会接受度讨论中可能没有被忽视的道德问题。为此,我们介绍了 Benham Taebi 对社会接受度和道德可接受度概念的区分,并开发了该区分的修改版本。通过在可接受度概念中引入经济和技术层面以及道德领域,可以澄清可接受度领域之间的冲突。这种澄清使人们能够更详细地讨论人工智能的道德问题。
截止日期前 4 天 - 成功的竞标者将是团队设定的估计价格范围内提供最低出价的竞标者。但是,如果投标价格在预算、结算和会计命令(1949 年帝国法令第 165 号)第 85 条范围内...
结合SAR卫星数据和AI技术的灾害监测技术正在发展。这将使我们能够广泛且高度准确地了解地表运动和损坏情况,并有望为快速采取防灾减灾措施做出贡献。具体来说,正在开发各种应用,包括使用卫星 SAR 监测土壤运动、通过将时间序列 SAR 干涉测量与地质信息相结合来可视化边坡灾害风险、以及使用 SAR 图像和人工智能提取地面和建筑物的损坏情况。特别是将SAR不受天气和时间影响的特性与AI先进的分析能力相结合,可以实现以往难以实现的广域、及时的灾害监测。