: 基于构建体的 DNA 打靶。核酸研究 39 : e82。 朱 CC,王 CC,孙 CS,许 C,尹 KC,朱 CY 和毕 FY( 1975 )通过氮源比较实验建立水稻花药培养的有效培养基。植物学报 15 : 1 - 11。 Faure, J - E, Digonnet, C 和 Dumas, C( 1994 )玉米配子的粘附和融合的体外系统。科学 263 : 1598 - 1600。 Holm, PB, Knudsen, S, Mouritzen, P, Negri, D, Olsen, FL 和 Roué, C( 1994 )从受精卵细胞机械分离的原生质体再生可育大麦植株。 Plant Cell 6 :531 – 543。Hwang, WY, Fu, Y, Reyon, D, Maeder, ML, Tsai, SQ, Sander, JD, Peterson, RT, Yeh, JR 和 Joung, JK (2013)利用 CRISPR-Cas 系统在斑马鱼中实现高效基因组编辑。Nat Biotechnol 31 :227 – 229。Jones, HD (2015)基因组编辑的监管不确定性。Nat Plants 1 :14011。Koiso, N, Toda, E, Ichikawa, M, Kato, N 和 Okamoto, T (2017)从水稻和玉米中分离的卵细胞和受精卵中基因表达系统的开发。Plant Direct 1 :e00010。 Kranz, E, Bautor, J 和 Lörz, H ( 1991 ) 单卵母细胞体外受精
本文件中介绍的方法由一位在实验中使用过 Alt-R CRISPR-Cas9 系统的 IDT 客户提供。本文件可作为在类似模型生物中使用 Alt-R CRISPR-Cas9 系统的起点,但可能并未针对您的基因或应用进行完全优化。IDT 不保证方法或此类方法的任何性能。IDT 应用专家只能提供与本文件中概述的方法相关的一般技术支持和故障排除支持。
传统上,将基因组编辑试剂引入哺乳动物受精卵是通过细胞质或原核微注射完成的。这一耗时的过程需要昂贵的设备和高水平的技能。受精卵电穿孔提供了一种简化和更精简的方法来转染哺乳动物受精卵。有许多研究检查了小鼠和大鼠受精卵电穿孔中使用的参数。在这里,我们回顾了已报道的小鼠和大鼠的电穿孔条件、时间和成功率,以及关于牲畜受精卵(特别是猪和牛)的少数报道。在受精时或受精后不久引入编辑试剂可以帮助降低嵌合率,即个体细胞中存在两种或更多种基因型;引入核酸酶蛋白而不是编码核酸酶的 mRNA 也可以。嵌合在世代间隔较长的大型牲畜物种中尤其成问题,因为通过繁殖获得非嵌合的纯合后代可能需要数年时间。通过非同源末端连接途径实现的基因敲除已得到广泛报道,并且使用电穿孔成功实现的基因敲除比基因敲入更多。将大型 DNA 质粒递送到受精卵中会受到透明带 (ZP) 的阻碍,并且大多数通过电穿孔实现的基因敲入都使用短单链 DNA (ssDNA) 修复模板,通常小于 1 kb。在不使用细胞质注射的情况下,将长达 4.9 kb 的较大供体修复模板与基因组编辑试剂一起递送到受精卵中最有希望的方法是使用重组腺相关病毒 (rAAV) 与电穿孔相结合。但是,与用于递送成簇的规律间隔回文重复序列 (CRISPR) 基因组编辑试剂的其他方法类似,这种方法也与高水平的嵌合性有关。最近的研究成果是利用编辑过的生殖系能力细胞补充生殖系消融个体,从而避免基因组编辑创始系生殖系中出现嵌合现象。即使通过电穿孔介导将基因组编辑试剂递送至哺乳动物受精卵,基因组编辑流程中仍存在其他瓶颈,目前阻碍了非嵌合基因组编辑牲畜的可扩展生产。
通常很难使用这些指标选择好的胚胎。因此,有必要阐明异常染色体分离的原因并防止异常胚胎的形成。迄今为止,为了研究异常分离的染色体和微核,已经进行了分析,包括使用一个受精卵的一个细胞对基因进行全面分析,以及对用福尔马林固定的受精卵的染色体观察的荧光观察。但是,由于综合细胞基因表达分析无法区分正常和异常的染色体,并且通过荧光观察观察异常的染色体仅允许分析一部分异常染色体,因此无法详细检查异常染色体。因此,在这项研究中,我们开发了一项技术,可以从染色体异常的小鼠2细胞阶段中去除微核,而无需杀死胚胎,并试图分析遗传切除的微核。
AAVpro 包装质粒 (AAV2,#6234;AAV5,#6664;AA6,#6665,Takara Bio) 和 AAVpro 293T 细胞系 (#632273,Takara Bio)。所有 AAV 载体质粒均通过将对应于目标基因座和敲入序列的 PCR 片段克隆到 EcoRV 和 BglII 限制位点之间的 pAAV-CMV 载体中,去除 CMV 启动子、b-珠蛋白内含子和 hGH polyA 来构建。按照制造商的说明,使用 Xfect 转染试剂 (#631318,Clontech) 将 AAV 质粒和包装质粒转染 293T 细胞。使用 AAVpro 纯化试剂盒 (所有血清型) (#6666,Takara Bio) 提取和浓缩 AAV。使用 AAVpro 滴定试剂盒(#6233,Takara Bio)和热循环仪 Dice 实时系统 III(TP950,Takara Bio)估算病毒基因组拷贝数。
Abkowitz, JL、Persik, MT、Shelton, GH、Ott, RL、Kiklevich, JV、Catlin, SN 和 Guttorp, P. (1995)。大型动物造血干细胞的行为。美国国家科学院院刊,92 (6),2031–2035。https://doi.org/10.1073/pnas.92.6.2031 Brinkman, EK、Kousholt, AN、Harmsen, T.、Leemans, C.、Chen, T.、Jonkers, J. 和 Van Steensel, B. (2018)。模板引导的 CRISPR/Cas9 编辑的简易量化。核酸研究,46 (10),e58。 https://doi.org/10.1093/nar/gky164 Le, QA, Hirata, M., Nguyen, NT, Takebayashi, K., Wittayarat, M., Sato, Y., Namula, Z., Nii, M., Tanihara, F., & Otoi, T. (2020)。使用不同浓度的 Cas9 蛋白和靶向肌肉生长抑制素 (MSTN) 基因的 gRNA 进行电穿孔处理对猪受精卵发育和基因编辑的影响。动物科学杂志,91 (1),e13386。 https://doi.org/10.1111/asj.13386 Li, R.、Liu, Y.、Pedersen, HS、Kragh, PM 和 Callesen, H. (2013)。猪单性生殖胚胎去除透明带后的发育和质量。Theriogenology,80 (1),58–64。https://doi.org/10.1016/j.theriogenology.2013.03.009 Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., & Gerdts, V. (2012)。猪:人类传染病的模型。微生物学趋势,20 (1),50–57。Nishio, K., Tanihara, F., Nguyen, T.-V., Kunihara, T., Nii, M., Hirata, M., Takemoto, T., & Otoi, T. (2018)。电穿孔过程中电压强度对体外生产的猪胚胎发育和质量的影响。家畜繁殖,53 (2),313–318。https://doi. org/10.1111/rda.13106 Peng, H., Wu, Y., & Zhang, Y. (2012)。通过电穿孔将 DNA 和吗啉代诺西酮有效递送到小鼠植入前胚胎中。PLoS One,7 (8),e43748。https://doi.org/10.1371/journal.pone.0043748 Peura, TT, & Vajta, G. (2003)。绵羊和牛核移植中现有方法与新方法的比较。克隆干细胞,5 (4),257–277。 https://doi.org/10.1089/153623003772032772 Qin, W., Dion, SL, Kutny, PM, Zhang, Y., Cheng, AW, Jillette, NL, Malhotra, A., Geurts, AM, Chen, Y.-G., & Wang, H. (2015). 通过合子电穿孔核酸酶在小鼠中实现高效的 CRISPR/Cas9 介导基因组编辑。遗传学,200 (2), 423–430。 https://doi.org/10.1534/ Genetics.115.176594 Remy, S., Chenouard, V., Tesson, L., Usal, C., Ménoret, S., Brusselle, L., Hes- lan, J.-M., Nguyen, TH, Bellien, J., Merot, J., De Cian, A., Giovannangeli, C., Concordet, J.-P., &Anegon, I. (2017). 通过使用电穿孔将 CRISPR/Cas9 蛋白和供体 DNA 递送到完整受精卵中来生成基因编辑大鼠。科学报告,7 (1),16554。https://doi.org/10。 1038/s41598-017-16328-y Tanihara, F.、Hirata, M.、Nguyen, NT、Sawamoto, O.、Kikuchi, T.、Doi, M. 和 Otoi, T. (2020)。通过将 CRISPR/Cas9 系统电穿孔到体外受精的受精卵中有效生成 GGTA1 缺陷猪。BMC Biotechnology,20 (1),40。https://doi.org/10.1186/s12896-020-00638-7
受精卵电穿孔是小鼠中 CRISPR/Cas9 介导的基因组编辑中复杂的原核注射程序的快速替代方法。然而,目前的电穿孔方案要么需要投资专门的电穿孔仪,要么需要对受精卵进行腐蚀性预处理,这会损害胚胎的活力。在这里,我们描述了一种易于适应的方法,通过使用带有合成 CRISPR/Cas9 组件的普通电穿孔仪对完整的受精卵进行电穿孔,高效地在小鼠中引入特定突变,并且技术要求最低。该方案可有效处理来自各种遗传背景的受精卵,并与其他 CRISPR 核酸酶(如 Cas12a)兼容。
这项研究得到了日本学术振兴会 (JSPS) KAKENHI(资助编号:18H03974、19KK0401、22K19238、23H00367、24K02010、22H04922(AdAMS))、日本科学技术振兴机构 COI-NEXT(JPMJPF2010)和日本医疗研究发展机构 (AMED)(24bm12230009)的支持。 名词解释(注1) CRISPR-Cas3:许多细菌都有一种名为CRISPR-Cas系统的防御系统,类似于适应性免疫。 CRISPR-Cas3属于1类CRISPR系统,2019年被报道为一种使用多蛋白复合物人工切割DNA的国产基因组编辑工具。 (注2)脱靶突变:在基因组编辑技术中,DNA序列中非预期的突变发生在特定目标序列以外的位置。最大限度地减少脱靶突变被认为对于基因组编辑技术的高度安全性至关重要。 (注3)长读测序:与传统方法相比,一次分析更长片段的DNA或RNA碱基序列的技术。在本研究中,我们使用了纳米孔测序方法,这是一种通过将序列穿过纳米级孔(纳米孔)实现高速解码的技术。
微注射预复合逆转录病毒SCNT转座子-基于基因组编辑的DNA进入早期DNA,通过精子递送遗传介导的基因组改变阶段受精卵进入受精卵工程细胞整合(ZFNs,TALENs,CRISPR / Cas9)