Xenopus laevis 青蛙是一种强大的发育模型,可用于将经典胚胎学与分子操作相结合的研究。由于胚胎尺寸大、易于显微注射以及能够通过已建立的命运图谱靶向组织,X. laevis 已成为主要的两栖动物研究模型。鉴于它们的异源四倍体基因组使基因敲除的产生变得复杂,需要制定策略来有效地诱变多个同源基因以评估基因功能。在这里,我们描述了一种利用 CRISPR-Cas9 介导的基因组编辑来靶向 F 0 X. laevis 胚胎中的单个等位基因或多个等位基因的方案。单个向导 (sg) RNA 旨在靶向编码关键蛋白质结构域的特定 DNA 序列。为了诱变具有两个等位基因的基因,sgRNA 是针对两个同源基因共有的序列设计的。该 sgRNA 与 Cas9 蛋白一起被微注射到受精卵中,以破坏整个胚胎中的基因组序列或进入特定的胚泡,以产生组织靶向效应。CRISPR/Cas9 产生的 DNA 双链断裂的易错修复会导致插入和缺失,从而在胚胎内产生嵌合基因病变。对从每个嵌合 F 0 胚胎中分离的基因组 DNA 进行测序,并使用软件评估产生的突变的性质和嵌合程度。该方案能够敲除整个胚胎或 F 0 X. laevis 胚胎中特定组织中的基因,以便于评估产生的表型。
摘要 单细胞测序是一种强大的方法,可以以细胞分辨率检测人类发育过程中的遗传变异及其表型后果。人类从单细胞受精卵开始,经过分裂和分化发育成多细胞生物。在受精前和发育过程中,细胞基因组获得数百个突变,这些突变会沿着细胞谱系传播。无论是生殖系突变还是体细胞突变,其中一些突变可能具有显著的基因型影响,并导致系统性或局限于组织的细胞表型病变。单细胞测序能够以细胞分辨率检测和监测基因型及其随之而来的分子表型。它提供了强大的工具来比较“正常”和“患病”条件下的细胞谱系,并建立基因型-表型关系。通过保留细胞异质性,单细胞测序与批量测序不同,它甚至可以检测正常组织中微小的患病细胞亚群。事实上,以细胞分辨率表征活检可以提供疾病的机制视图。虽然单细胞方法目前主要用于基础研究,但可以预期这些技术在临床中的应用可能有助于检测、诊断并最终治疗罕见遗传疾病以及癌症。这篇综述文章概述了人类遗传学背景下的单细胞测序技术,旨在使临床医生能够理解和解释单细胞测序数据和分析。我们讨论了最先进的实验和分析工作流程,并强调了当前的挑战/局限性。值得注意的是,我们重点关注该技术在人类遗传学中的两个潜在应用,即使用单细胞功能基因组学注释非编码基因组和使用单细胞测序数据进行计算机变体优先级排序。
1,2 <伊拉克基地组织教育学院摘要:当前的研究旨在跟进瑞士白鼠穆斯科鲁斯(Mussculus)瑞士白鼠中的一些胚胎发展,以确定这些发展的本质,以确定从此方面提高科学知识,并为实验性的研究提供了众多的功能。胆汁,营养化合物的代谢,解毒,通过糖原储存来调节葡萄糖水平和通过分泌凝血因子和血清蛋白来控制血液平衡。HHEPATOCTOCTOCTOCTES是肝脏中的主要细胞类型,占了成人器官质量,肝细胞和胆小性细胞的70%的元素,而这些细胞均来自肝脏,而embiary Endod secenercy severers extry secenercy serry secenercy secenercy se nive则是该细胞的启发。星形胶质细胞,kupffer细胞和血管细胞是中胚层起源的。发生内部受精后,受精卵开始分裂,直到胚泡分为滋养剂,将来形成了胎盘,并形成了后来形成胚胎的内部细胞的质量。 关键字:肝脏发育。 胚胎。 mus musculus。 胚胎发育。 引言小鼠被认为是重要的实验动物之一,是标准模型,因为它们以高速和快速的方式总结了疾病和遗传发育的演变,这些疾病和遗传发育适合许多研究,并且它们的规模很小,而且价格较小,而且价格易于提高,易于提高,获得和处理(Wong et ai,2015年)。 Pritchett,2007)。)。 Bossard and Zaret,(2000年)。<伊拉克基地组织教育学院摘要:当前的研究旨在跟进瑞士白鼠穆斯科鲁斯(Mussculus)瑞士白鼠中的一些胚胎发展,以确定这些发展的本质,以确定从此方面提高科学知识,并为实验性的研究提供了众多的功能。胆汁,营养化合物的代谢,解毒,通过糖原储存来调节葡萄糖水平和通过分泌凝血因子和血清蛋白来控制血液平衡。HHEPATOCTOCTOCTOCTES是肝脏中的主要细胞类型,占了成人器官质量,肝细胞和胆小性细胞的70%的元素,而这些细胞均来自肝脏,而embiary Endod secenercy severers extry secenercy serry secenercy secenercy se nive则是该细胞的启发。星形胶质细胞,kupffer细胞和血管细胞是中胚层起源的。发生内部受精后,受精卵开始分裂,直到胚泡分为滋养剂,将来形成了胎盘,并形成了后来形成胚胎的内部细胞的质量。 关键字:肝脏发育。 胚胎。 mus musculus。 胚胎发育。 引言小鼠被认为是重要的实验动物之一,是标准模型,因为它们以高速和快速的方式总结了疾病和遗传发育的演变,这些疾病和遗传发育适合许多研究,并且它们的规模很小,而且价格较小,而且价格易于提高,易于提高,获得和处理(Wong et ai,2015年)。 Pritchett,2007)。)。 Bossard and Zaret,(2000年)。<伊拉克基地组织教育学院摘要:当前的研究旨在跟进瑞士白鼠穆斯科鲁斯(Mussculus)瑞士白鼠中的一些胚胎发展,以确定这些发展的本质,以确定从此方面提高科学知识,并为实验性的研究提供了众多的功能。胆汁,营养化合物的代谢,解毒,通过糖原储存来调节葡萄糖水平和通过分泌凝血因子和血清蛋白来控制血液平衡。HHEPATOCTOCTOCTOCTES是肝脏中的主要细胞类型,占了成人器官质量,肝细胞和胆小性细胞的70%的元素,而这些细胞均来自肝脏,而embiary Endod secenercy severers extry secenercy serry secenercy secenercy se nive则是该细胞的启发。星形胶质细胞,kupffer细胞和血管细胞是中胚层起源的。发生内部受精后,受精卵开始分裂,直到胚泡分为滋养剂,将来形成了胎盘,并形成了后来形成胚胎的内部细胞的质量。 关键字:肝脏发育。 胚胎。 mus musculus。 胚胎发育。 引言小鼠被认为是重要的实验动物之一,是标准模型,因为它们以高速和快速的方式总结了疾病和遗传发育的演变,这些疾病和遗传发育适合许多研究,并且它们的规模很小,而且价格较小,而且价格易于提高,易于提高,获得和处理(Wong et ai,2015年)。 Pritchett,2007)。)。 Bossard and Zaret,(2000年)。<伊拉克基地组织教育学院摘要:当前的研究旨在跟进瑞士白鼠穆斯科鲁斯(Mussculus)瑞士白鼠中的一些胚胎发展,以确定这些发展的本质,以确定从此方面提高科学知识,并为实验性的研究提供了众多的功能。胆汁,营养化合物的代谢,解毒,通过糖原储存来调节葡萄糖水平和通过分泌凝血因子和血清蛋白来控制血液平衡。HHEPATOCTOCTOCTOCTES是肝脏中的主要细胞类型,占了成人器官质量,肝细胞和胆小性细胞的70%的元素,而这些细胞均来自肝脏,而embiary Endod secenercy severers extry secenercy serry secenercy secenercy se nive则是该细胞的启发。星形胶质细胞,kupffer细胞和血管细胞是中胚层起源的。发生内部受精后,受精卵开始分裂,直到胚泡分为滋养剂,将来形成了胎盘,并形成了后来形成胚胎的内部细胞的质量。 关键字:肝脏发育。 胚胎。 mus musculus。 胚胎发育。 引言小鼠被认为是重要的实验动物之一,是标准模型,因为它们以高速和快速的方式总结了疾病和遗传发育的演变,这些疾病和遗传发育适合许多研究,并且它们的规模很小,而且价格较小,而且价格易于提高,易于提高,获得和处理(Wong et ai,2015年)。 Pritchett,2007)。)。 Bossard and Zaret,(2000年)。<伊拉克基地组织教育学院摘要:当前的研究旨在跟进瑞士白鼠穆斯科鲁斯(Mussculus)瑞士白鼠中的一些胚胎发展,以确定这些发展的本质,以确定从此方面提高科学知识,并为实验性的研究提供了众多的功能。胆汁,营养化合物的代谢,解毒,通过糖原储存来调节葡萄糖水平和通过分泌凝血因子和血清蛋白来控制血液平衡。HHEPATOCTOCTOCTOCTES是肝脏中的主要细胞类型,占了成人器官质量,肝细胞和胆小性细胞的70%的元素,而这些细胞均来自肝脏,而embiary Endod secenercy severers extry secenercy serry secenercy secenercy se nive则是该细胞的启发。星形胶质细胞,kupffer细胞和血管细胞是中胚层起源的。发生内部受精后,受精卵开始分裂,直到胚泡分为滋养剂,将来形成了胎盘,并形成了后来形成胚胎的内部细胞的质量。 关键字:肝脏发育。 胚胎。 mus musculus。 胚胎发育。 引言小鼠被认为是重要的实验动物之一,是标准模型,因为它们以高速和快速的方式总结了疾病和遗传发育的演变,这些疾病和遗传发育适合许多研究,并且它们的规模很小,而且价格较小,而且价格易于提高,易于提高,获得和处理(Wong et ai,2015年)。 Pritchett,2007)。)。 Bossard and Zaret,(2000年)。<伊拉克基地组织教育学院摘要:当前的研究旨在跟进瑞士白鼠穆斯科鲁斯(Mussculus)瑞士白鼠中的一些胚胎发展,以确定这些发展的本质,以确定从此方面提高科学知识,并为实验性的研究提供了众多的功能。胆汁,营养化合物的代谢,解毒,通过糖原储存来调节葡萄糖水平和通过分泌凝血因子和血清蛋白来控制血液平衡。HHEPATOCTOCTOCTOCTES是肝脏中的主要细胞类型,占了成人器官质量,肝细胞和胆小性细胞的70%的元素,而这些细胞均来自肝脏,而embiary Endod secenercy severers extry secenercy serry secenercy secenercy se nive则是该细胞的启发。星形胶质细胞,kupffer细胞和血管细胞是中胚层起源的。发生内部受精后,受精卵开始分裂,直到胚泡分为滋养剂,将来形成了胎盘,并形成了后来形成胚胎的内部细胞的质量。关键字:肝脏发育。胚胎。mus musculus。胚胎发育。引言小鼠被认为是重要的实验动物之一,是标准模型,因为它们以高速和快速的方式总结了疾病和遗传发育的演变,这些疾病和遗传发育适合许多研究,并且它们的规模很小,而且价格较小,而且价格易于提高,易于提高,获得和处理(Wong et ai,2015年)。Pritchett,2007)。)。Bossard and Zaret,(2000年)。因为它们可以操纵遗传学,并且在病理生理学和治疗性方面与人具有相似的方面,这使它们成为研究中最广泛使用的模型。小鼠胚胎在科学实验中很重要,因为小鼠肝脏的细胞组织与其他哺乳动物的细胞组织完全相似,这证实了小鼠为研究肝脏结构和功能提供了有用的动物模型(Baratta等,2009)。对小鼠肝发育的研究已吸引了胚胎学研究人员已有60多年的历史,鼓励科学家研究肝脏在储存和释放营养中及其在去除有毒物质中的重要作用(Sigal等,1999)。胎儿肝脏在胚胎发育过程中导致红细胞的产生,并且肝脏经历了两个阶段,其特征是肝细胞的成熟以及通过形态变化的几个阶段的结缔组织增加(Khanna,2014)。肝脏,胆管系统和胰腺具有从人体中形成前肢的确定性腹侧内胚层共同起源。Cardinale等人,(2012年)肝脏是最大的内部器官,在妊娠发育过程中提供了造血的部位,以及在杜尔索迪(Adulthoodi)中的重要代谢,合成和排毒。肝发育受到一系列细胞和渐进性的细胞和分子相互作用的调节。肝母细胞从内胚层增殖,形成组织芽,然后进一步扩散到相邻的隔膜横向中,与内皮细胞混合。Asahina等人,(2006年)。ader等人,(2006年),肝发育始于尾尾前的憩室及其的一部分,在这种未成熟的肝细胞(肝素)开始形成肝细胞(Hepatoblasts)之后,随着肝脏的相互作用,在与内二硫代表的上皮细胞之间的相互作用后开始形成,以等体的表皮细胞之间的相互作用,并形成。上皮间质相互作用。肝形态发生需要肝细胞和血管内皮之间的相互作用。肝脏延伸到其独特的能力,以响应肝脏肿块或损伤而再生。作为针对有毒化学物质和重新加工或吸收底物的生化防御,肝脏可能会定期暴露于有害因素上。Mao等人,(2014年)。
摘要 单细胞测序是一种强大的方法,可以以细胞分辨率检测人类发育过程中的遗传变异及其表型后果。人类从单细胞受精卵开始,经过分裂和分化发育成多细胞生物。在受精前和发育过程中,细胞基因组获得数百个突变,这些突变会沿着细胞谱系传播。无论是生殖系突变还是体细胞突变,其中一些突变可能具有显著的基因型影响,并导致系统性或局限于组织的细胞表型病变。单细胞测序能够以细胞分辨率检测和监测基因型及其随之而来的分子表型。它提供了强大的工具来比较“正常”和“患病”条件下的细胞谱系,并建立基因型-表型关系。通过保留细胞异质性,单细胞测序与批量测序不同,它甚至可以检测正常组织中微小的患病细胞亚群。事实上,以细胞分辨率表征活检可以提供疾病的机制视图。虽然单细胞方法目前主要用于基础研究,但可以预期这些技术在临床中的应用可能有助于检测、诊断并最终治疗罕见遗传疾病以及癌症。这篇综述文章概述了人类遗传学背景下的单细胞测序技术,旨在使临床医生能够理解和解释单细胞测序数据和分析。我们讨论了最先进的实验和分析工作流程,并强调了当前的挑战/局限性。值得注意的是,我们重点关注该技术在人类遗传学中的两个潜在应用,即使用单细胞功能基因组学注释非编码基因组和使用单细胞测序数据进行计算机变体优先级排序。
摘要:电穿孔动物基因敲除系统技术(TAKE)是一种简单有效的方法,利用成簇的规律间隔短回文重复序列(CRISPR)/CRISPR 相关蛋白 9(Cas9)系统生成转基因小鼠。为了增强电穿孔在小鼠基因编辑中的多功能性,针对玻璃化冷冻小鼠胚胎优化了电条件,并将其应用于广泛使用的近交系(C57BL/6NCr、BALB/cCrSlc、FVB/NJcl 和 C3H/HeJJcl)的新鲜胚胎。电脉冲设置(穿孔脉冲:电压,150 V;脉冲宽度,1.0 ms;脉冲间隔,50 ms;脉冲数,+4;转移脉冲:电压,20 V;脉冲宽度,50 ms;脉冲间隔,50 ms;脉冲数,±5)对于玻璃化冷冻加温的小鼠胚胎是最佳的,其可以有效地将 gRNA/Cas9 复合物递送到受精卵中而无需透明带变薄过程并编辑目标位点。这些电条件在广泛使用的近交系小鼠中有效地产生了转基因小鼠。此外,使用间隙为 5 mm 的电极进行电穿孔可以在 5 分钟内引入超过 100 个胚胎,而无需特殊的预处理和复杂的技术技能,例如显微注射,并且在产生的后代中表现出较高的胚胎发育率和基因组编辑效率,从而快速高效地产生基因组编辑小鼠。本研究中使用的电条件用途广泛,可以更轻松高效地生成转基因小鼠,有助于了解人类疾病和基因功能。关键词:CRISPR/Cas9、电穿孔、冻融胚胎、基因组编辑
基因组操作是一种有用的方法,可用于阐明发育、生理和行为方面的分子途径。然而,由于缺乏适用于珊瑚鱼的基因编辑工具,因此它们许多独特特征的遗传基础仍有待研究。一种适合应用这种技术的标志性珊瑚鱼群是海葵鱼 (Amphiprioninae),因为它们与海葵共生、雌雄同体、复杂的社会等级、皮肤图案发展和视觉,并且相对容易在水族箱中饲养,因此被广泛研究。在这项研究中,我们开发了一种基因编辑方案,用于将 CRISPR/Cas9 系统应用于眼斑海葵鱼 (Amphiprion ocellaris)。受精卵的显微注射用于证明我们的 CRISPR/Cas9 方法在两个不同靶位点的成功应用:与视觉有关的视紫红质样 2B 视蛋白编码基因 (RH2B) 和与黑色素生成的酪氨酸酶生成基因 (tyr)。对眼斑海马胚胎中测序的靶基因区域进行分析表明,注射胚胎的吸收率高达 73.3%。进一步分析亚克隆的突变基因序列并结合扩增子散弹枪测序表明,我们的方法在 F0 眼斑海马胚胎中产生双等位基因突变的效率为 75% 到 100%。此外,我们清楚地显示了 tyr 突变胚胎的功能丧失,其表现出典型的低黑色素表型。该方案旨在作为进一步探索 CRISPR/Cas9 在眼斑海马中潜在应用的有用起点。眼斑鱼,作为研究小丑鱼和其他珊瑚鱼基因功能的平台。
摘要:甲状腺激素(Th)对于正常的脑发育,影响神经细胞分化,迁移和突触发生至关重要。在环境中发现了多种内分泌中断化学物质(EDC),这引起了人们对它们对TH信号的潜在影响以及对神经发育和行为的影响的关注。虽然大多数对EDC的研究都研究了单个化学物质的影响,但人类健康可能会受到化学物质混合物的不利影响。EDC暴露对人类健康的潜在后果是深远的,包括免疫功能,生殖健康和神经系统发展的问题。我们假设胚胎暴露于化学物质的混合物(含有酚,邻苯二甲酸盐,农药,重金属和含氟氧化,多氯化和多溴化合物)中,如在人羊膜流体中通常发现的,可能会导致大脑发育的改变。我们评估了其对两栖动物模型(Xenopus laevis)对甲状腺破坏高度敏感的影响。将受精卵暴露于TH(甲状腺素,T 4 10 nm)或羊膜混合物(在实际浓度下),直到达到NF47期,我们在其中使用RT-QPCR和RNA测序分析了thep tadpoles的基因表达。结果表明,尽管存在Th依赖性基因的某些重叠,但T 4和混合物具有不同的基因特征。免疫组织化学显示,在T 4处理的动物的大脑中增殖增加,而羊膜混合物没有观察到差异。此外,我们证明了t端的运动能力减少,以响应T 4和混合物暴露。由于组成混合物的各个化学物质被认为是安全的,因此这些结果突出了检查混合物以改善风险评估的影响的重要性。
方法。第一种方法是将含有 loxP 位点的 ssODN 引入目标外显子两侧的 5' 和 3' 位点。这是通过使用 2 个 sgRNA 完成的。第二种方法使用含有 2 个 loxP 位点的 lssDNA 模板,这 2 个 loxP 位点位于目标 DNA 序列两侧。这种方法使用了 2 个 sgRNA。B. UTSW 转基因核心提供给您的试剂:您向核心支付的 CRISPR 服务费用包括我们用于完成您的项目的 IDT Sp. Cas9 蛋白的费用。如果您的项目涉及使用不同的编辑酶(如 Cas12 或 Cpf),请联系核心工作人员更详细地讨论该项目。C. 了解您的基因的重要细节:使用基因组浏览器(如 NCBI、UCSC 或 ENSEMBl)收集有关您的目标基因的相关信息。这包括任何替代转录本、外显子的数量和重要性、位于特定内含子中的调控基序以及编码序列等细节,以便成功设计 sgRNA 和供体 DNA 模板。使用 MGI- 小鼠基因组信息学来确定是否存在与靶基因敲除相关的已知表型非常重要。了解基因的 KO 是否可能导致致命表型(无论是胚胎还是出生后早期)尤为重要。了解并将此信息传达给核心人员将使我们能够修改用于生成小鼠突变株的条件,以便我们主要创建 KO 等位基因杂合的小鼠。D. sgRNA 的设计:注射受精卵中发生的基因组编辑的效率在很大程度上取决于针对靶标的 sgRNA 的正确设计。此设计的关键组成部分包括:
转化和基因组编辑技术是从基础研究到实用材料生产、植物育种等实际应用领域中不可或缺的技术。在植物研究中,遗传转化、基因组编辑技术、个体再生以及组织和细胞培养系统都是必不可少的。组织培养研究始于20世纪初。Haberlandt(1902)提出植物细胞具有全能性,这通过发现从生长中的愈伤组织中分化出的不定芽得到证实(White等人,1939)。随后,许多研究人员尝试诱导不定芽和根的分化。组织和细胞培养技术的突破是植物激素的发现,例如细胞分裂素和生长素。研究发现,控制细胞分裂素与生长素的比例可以调节烟草的不定芽和根的分化(Skoog和Miller,1957)。Steward等人(1958)和Reinert(1959)从胡萝卜愈伤组织诱导体细胞胚再生出完整的植物。该生长过程在形态上类似于受精卵的胚胎发育,因此再生被称为体细胞胚胎发生。这一认识为研究分化机制和应用遗传转化和基因组编辑提供了一种重要方法。同时,许多用于培养组织和细胞的基础培养基也被开发出来,其中一些至今仍在使用。Murashige 和 Skoog (1962) 报道了一种通过培养烟草髓细胞来优化营养浓度的培养基(MS 培养基)。Gamborg 等人 (1968) 报道了用于培养大豆根尖细胞的 B5 培养基。其他已建立的培养基包括 White 培养基(White 1963)、LS 培养基(Linsmaier 和 Skoog 1965)、NN 培养基(Nitsch 和 Nitsch 1969)、N6 培养基(Chu 1978)和 AA 培养基(Müller 和 Grafe 1978)。通过调节植物激素条件、改变碳源、改良无机盐等,可以开发出适合每种植物材料的培养基。
摘要 尽管靶向基因组编辑技术已成为加速功能基因组学的有力反向遗传方法,但由化学诱变剂诱导的传统突变体文库对于植物研究仍然很有价值。含有化学诱导突变的植物是简单而有效的遗传工具,可以在不考虑生物安全问题的情况下种植。突变体个体的全基因组测序减少了突变体筛选所需的工作量,从而提高了它们的实用性。在本研究中,我们对由用 N-甲基-N-亚硝脲 (MNU) 处理单个受精卵细胞而获得的 Oryza sativa cv. Nipponbare 突变体文库成员进行了测序。通过对该突变体文库中的 266 株 M 1 植物进行全基因组测序,我们总共鉴定出 66 万个诱导点突变。这个结果代表了 373 Mb 组装水稻基因组中每 146 kb 基因组序列中有一个突变。这些点突变均匀分布于整个水稻基因组中,超过 70,000 个点突变位于编码序列内。尽管该突变体文库规模较小,但近 61% 的所有注释水稻基因中均发现了非同义突变,8.6%(3248 个基因)的点突变对基因功能有较大影响,例如获得终止密码子或丢失起始密码子。WGS 表明使用水稻受精卵细胞的 MNU 诱变可有效诱导突变,适用于构建用于计算机突变体筛选系统的突变体文库。扩展该突变体文库及其数据库将提供一种有用的计算机筛选工具,以促进功能基因组学研究,特别是针对水稻。关键词:水稻突变体文库、N-甲基-N-亚硝脲 (MNU)、单核苷酸变体 (SNV)、NGS、计算机 TILLING、水稻、全基因组测序、遗传资源