3为了使符号简单,我们不会区分随机变量及其实现,除非在期望的情况下,我们指出了带有HAT的随机变量。例如,e p(x)f(ˆ x,z)是关于从分布p(x)绘制的随机变量X的期望,其实现值z被视为参数。4分布q(y)的熵为-p y q(y)ln q(y)。我们在整个论文中应用标准约定0 ln 0 = 0。5我们假设Q包含至少一个分布q(x,z),以便q(x)= q 0(x),其支持是p(x,z)支持的子集。然后确保优化器的存在。此分布实现了至少达到此值的有限值和一组可行分布。由于该集合的目标是连续的,因此解决方案存在。请注意,supp(q 0(x))⊆supp(p(x))意味着代理不能用q 0绘制的数据来反驳模型p。
3为了使符号简单,我们不会区分随机变量及其实现,除非在期望的情况下,我们指出了带有HAT的随机变量。例如,e p(x)f(ˆ x,z)是关于从分布p(x)绘制的随机变量X的期望,其实现值z被视为参数。4分布q(y)的熵为-p y q(y)ln q(y)。我们在整个论文中应用标准约定0 ln 0 = 0。5我们假设Q包含至少一个分布q(x,z),以便q(x)= q 0(x),其支持是p(x,z)支持的子集。然后确保优化器的存在。此分布实现了至少达到此值的有限值和一组可行分布。由于该集合的目标是连续的,因此解决方案存在。请注意,supp(q 0(x))⊆supp(p(x))意味着代理不能用q 0绘制的数据来反驳模型p。
销售和运营规划涉及来自多个利益相关者的大量输入和数据。但是如果你想知道从哪里开始,那么答案就是一个不受约束的需求计划。这会告诉你市场上对你的产品的潜在需求,然后通过应用所需的约束,你可以为你可以满足的需求创建一个受约束的计划。
所有投资都涉及风险,包括本金的潜在损失。过去的表现并不能表示未来的结果。投资者应在投资前仔细考虑自己独特的投资目标,风险承受能力和费用。有关我们的投资策略,风险和费用的更多信息,请参考我们的表格第2A部分披露手册,可应要求提供。
1。Amunts K,Mohlberg H,Bludau S,Zilles K. Julich-Brain:人类大脑细胞结构的3D概率地图。Science 2020; 369:988-92。 2。 Andersson JL,Sotiropoulos SN。 一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。 Neuroimage 2016; 125:1063-78。 3。 Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。 对大脑图像注册中蚂蚁相似性表现的可重复评估。 Neuroimage 2011; 54:2033-44。 4。 Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A. 跟踪密度成像(TDI):超级分辨率属性的验证。 Neuroimage 2011; 56:1259-66。 5。 Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。 Neuroimage 2009; 47:S102。 6。 Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。 人类Connectome项目的神经影像学方法。 Nat Neurosci 2016; 19:1175-87。 7。 Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。 用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。 SCI REP 2020; 10:21285。 8。 Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Science 2020; 369:988-92。2。Andersson JL,Sotiropoulos SN。 一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。 Neuroimage 2016; 125:1063-78。 3。 Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。 对大脑图像注册中蚂蚁相似性表现的可重复评估。 Neuroimage 2011; 54:2033-44。 4。 Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A. 跟踪密度成像(TDI):超级分辨率属性的验证。 Neuroimage 2011; 56:1259-66。 5。 Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。 Neuroimage 2009; 47:S102。 6。 Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。 人类Connectome项目的神经影像学方法。 Nat Neurosci 2016; 19:1175-87。 7。 Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。 用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。 SCI REP 2020; 10:21285。 8。 Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Andersson JL,Sotiropoulos SN。一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。Neuroimage 2016; 125:1063-78。3。Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。对大脑图像注册中蚂蚁相似性表现的可重复评估。Neuroimage 2011; 54:2033-44。4。Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A.跟踪密度成像(TDI):超级分辨率属性的验证。Neuroimage 2011; 56:1259-66。5。Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。Neuroimage 2009; 47:S102。6。Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。人类Connectome项目的神经影像学方法。Nat Neurosci 2016; 19:1175-87。7。Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。SCI REP 2020; 10:21285。8。Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。道概率图:白质解剖结构和特定于区域的分析。Neuroimage 2008; 39:336-47。9。Jenkinson M,Bannister P,Brady M,SmithS。改进了对脑图像的鲁棒和准确的线性注册和运动校正的优化。Neuroimage 2002; 17:825-41。10。Jenkinson M,Beckmann CF,Behrens TE,Woolrich MW,
摘要 我们提出 AI-Lyricist:一个根据所需词汇和 MIDI 文件作为输入来生成新颖而有意义的歌词的系统。这项任务涉及多项挑战,包括自动识别旋律并从多声道音乐中提取音节模板、生成与输入音乐风格和音节对齐相匹配的创意歌词以及满足词汇约束。为了应对这些挑战,我们提出了一个自动歌词生成系统,该系统由四个模块组成:(1)音乐结构分析器,用于从给定的 MIDI 文件中获取音乐结构和音节模板,利用预期音节数的概念更好地识别旋律;(2)基于 SeqGAN 的歌词生成器,通过策略梯度进行多对抗训练优化,使用双鉴别器进行文本质量和音节对齐;(3)深度耦合的音乐歌词嵌入模型,将音乐和歌词投射到联合空间中,以便公平比较旋律和歌词约束;以及一个名为 (4) Polisher 的模块,通过对生成器应用掩码并替换要学习的单词来满足词汇约束。我们在超过 7,000 个音乐歌词对的数据集上训练了我们的模型,并通过主题、情感和流派方面的手动注释标签进行了增强。客观和主观评价均表明 AI-Lyricist 在所提出的任务上的表现优于最先进的技术。
绿色增长的替代方案现在被称为“去增长”。杰森·希克尔 (Jason Hickel) 的《少即是多》 (Less Is More) 是有关这一运动的圣经之一。去增长者并不赞成关闭全球经济,因为他们认识到这将导致社会混乱,穷人和边缘化群体将遭受最大的苦难,但正如曼恩所写,他们“将有目的的缩减和全球重新分配结合起来”。去增长者提倡积极出行而非开车、以植物为基础的饮食、生态农业、房屋保温、共享、维修,以及青睐二手产品而非新产品等政策。(BMJ 的读者会认识到,这些都是有利于健康的政策。)但这足以让全球经济继续发展并让人们摆脱贫困吗?你如何实现它?
摘要。表面注册在形状分析和几何处理中起着基本作用。通常,评估表面映射结果有三个标准:不同的仿形,小失真和特征对齐。为满足这些要求,这项工作提出了一个新颖的模型,该模型是地标的限制了二态性的。基于Teichm uller理论,该映射空间由Bel-Trami系数生成,它们在有限的teichm- uller中等同于0。这些Beltrami系数是线性方程组的解决方案。通过使用此理论模型,可以通过在不同的态度空间中使用线性约束来实现最佳注册,例如谐波图和Teichm uller图,从而最大程度地减少了不同类型的失真类型。理论模型是严格的,具有实用价值。我们的实验结果证明了该方法的效率和效率。
摘要 - 次数不受约束的二进制优化(QUBO)问题成为一种有吸引力且有价值的优化问题,因为它可以轻松地转换为各种其他组合优化问题,例如图形/数字分区,最大值,SAT,SAT,Vertex,Vertex,Vertex,TSP,TSP等。其中一些问题是NP-HARD,并广泛应用于行业和科学研究中。同时,已经发现Qubo与两个新兴的计算范式,神经形态计算和量子计算兼容,具有巨大的潜力,可以加快未来的优化求解器。在本文中,我们提出了一种新型的神经形态计算范式,该计算范式采用多个协作尖峰神经网络来解决QUBO问题。每个SNN进行局部随机梯度下降搜索,并定期分享全球最佳解决方案,以对Optima进行元效力搜索。我们模拟了模型,并将其与无协作的单个SNN求解器和多SNN求解器进行比较。通过对基准问题的测试,提出的方法被证明在寻找QUBO Optima方面更有效。具体来说,它在无协作和单SNN求解器的情况下分别在多SNN求解器上显示X10和X15-20加速。索引术语 - 数字计算,尖峰神经网络作品,组合优化,QUBO