摘要 我们提出 AI-Lyricist:一个根据所需词汇和 MIDI 文件作为输入来生成新颖而有意义的歌词的系统。这项任务涉及多项挑战,包括自动识别旋律并从多声道音乐中提取音节模板、生成与输入音乐风格和音节对齐相匹配的创意歌词以及满足词汇约束。为了应对这些挑战,我们提出了一个自动歌词生成系统,该系统由四个模块组成:(1)音乐结构分析器,用于从给定的 MIDI 文件中获取音乐结构和音节模板,利用预期音节数的概念更好地识别旋律;(2)基于 SeqGAN 的歌词生成器,通过策略梯度进行多对抗训练优化,使用双鉴别器进行文本质量和音节对齐;(3)深度耦合的音乐歌词嵌入模型,将音乐和歌词投射到联合空间中,以便公平比较旋律和歌词约束;以及一个名为 (4) Polisher 的模块,通过对生成器应用掩码并替换要学习的单词来满足词汇约束。我们在超过 7,000 个音乐歌词对的数据集上训练了我们的模型,并通过主题、情感和流派方面的手动注释标签进行了增强。客观和主观评价均表明 AI-Lyricist 在所提出的任务上的表现优于最先进的技术。
摘要。表面注册在形状分析和几何处理中起着基本作用。通常,评估表面映射结果有三个标准:不同的仿形,小失真和特征对齐。为满足这些要求,这项工作提出了一个新颖的模型,该模型是地标的限制了二态性的。基于Teichm uller理论,该映射空间由Bel-Trami系数生成,它们在有限的teichm- uller中等同于0。这些Beltrami系数是线性方程组的解决方案。通过使用此理论模型,可以通过在不同的态度空间中使用线性约束来实现最佳注册,例如谐波图和Teichm uller图,从而最大程度地减少了不同类型的失真类型。理论模型是严格的,具有实用价值。我们的实验结果证明了该方法的效率和效率。