在现实条件下评估心理负荷是确保执行需要持续注意力的任务的工人表现的关键。先前的文献已经为此采用了脑电图 (EEG),尽管已经观察到脑负荷与脑电图的相关性因受试者和身体压力而异,因此很难设计出能够同时呈现不同用户可靠表现的模型。领域适应包括一组策略,旨在提高机器学习系统在训练时对未见数据的性能。然而,这些方法可能依赖于对所考虑的数据分布的假设,而这些假设通常不适用于 EEG 数据的应用。受这一观察的启发,在这项工作中,我们提出了一种策略来估计从不同受试者收集的数据中观察到的多种数据分布之间的两种差异,即边际和条件偏移。除了阐明对特定数据集成立的假设之外,使用所提出的方法获得的统计偏移估计值还可用于研究机器学习管道的其他方面,例如定量评估领域适应策略的有效性。具体来说,我们考虑了从在跑步机上跑步和在固定自行车上踩踏板时执行心理任务的个体收集的脑电图数据,并探索了通常用于减轻跨受试者变异性的不同标准化策略的影响。我们展示了不同的标准化方案对统计变化的影响,以及它们与在训练时对未见过的参与者进行评估的心理工作量预测准确性的关系。
能够根据上下文信息灵活切换对外部刺激的反应的能力对于与复杂世界的成功互动至关重要。在许多领域1-3中必须进行上下文依赖性计算,但它们的神经实现仍然很少理解。在这里,我们在大鼠中开发了一项新颖的行为任务,以研究上下文依赖性的选择和决策证据的积累4-6。在猴子和大鼠数据支持的假设下,我们首先从数学上显示网络可以通过三个定义组件的组合来解决此问题。可以通过实验数据直接识别和测试这些组件。我们进一步表明,现有的电生理和建模数据与这些组件的各种可能组合兼容,这表明不同的个体可以使用不同的组件组合。为了研究各个受试者的变异性,我们开发了自动化的高通量方法来培训大鼠的任务,并在其上训练了许多受试者。与理论预测,神经和行为分析一致,尽管任务表现均匀,但大鼠均显示了跨大鼠的实质异质性。我们的理论进一步预测了行为和神经信号之间的特定联系,该签名在数据中得到了强有力的支持。总而言之,我们的结果提供了一个新的实验支持的理论框架,以分析执行灵活决策任务的生物学和人工系统中的个体变异性,它们为较高认知的个体变异性研究打开了大门,并提供了对情境依赖性计算的神经机制的见解。
通过睡眠倾向测试(SPT研究了抗抑郁药曲唑酮和丙咪嗪对昼夜节律的影响;由35分钟的EEG记录在09:00,11:00,11:00,11:00,13:00,13:00,15:00,15:00,17:00,17:00)检查了睡眠潜伏期。受试者是11名健康的男性志愿者(平均年龄为23.6岁)。药物每天使用不活动的安慰剂作为对照,每天对单盲试验进行4次药物。药物的剂量为曲唑酮50-100毫克,丙咪嗪20-40毫克。我们讨论了使用相同的药物和剂量与大多数相同受试者的相同药物和剂量进行的循环节奏(涉及先前的polysomnograhy psg)研究。结果,SPT的平均睡眠潜伏期在09:00(p <0.1)(安慰剂)中最短,在11:00 p <0.05时,曲唑酮和13:00(在13:00)(没有显着)使用丙氨酸胺给药。这些结果表明两种药物都不会影响嗜睡。他们在白天(一天的节奏)上影响了昼夜节律。他们推迟了一天的节奏。一天节奏的延迟是由于曲唑酮造成的,不仅是由Trazodon给药本身引起的,而且还引起了前一天晚上PSG研究中获得的慢波睡眠的增加。和日节律延迟是由于丙咪嗪引起的,并且可能不仅是由丙咪嗪的给药本身引起的,而且还由慢波睡眠和REM睡眠的百分比降低,以及前一天晚上PSG研究中获得的REM潜伏期的增加。因此,我们得出的结论是,没有药物影响嗜睡的趋势,但确实影响了健康受试者的节奏。
1瓦伦西亚大学生理学系,西班牙瓦伦西亚46010; jourguz @ alumni.es(J.E.O.-G.);转换。 ); 2西班牙瓦伦西亚大学UBIC研究小组;科学,CEU Cardinal Herrera,西班牙瓦伦西亚46115; (O.J.A.-M。); (A.B.) 瓦伦西亚大学医院卫生研究所(包括),瓦伦西亚大学医学系,西班牙瓦伦西亚46010; 5 Biom中心;电话。 : +34-9639838531瓦伦西亚大学生理学系,西班牙瓦伦西亚46010; jourguz @ alumni.es(J.E.O.-G.);转换。); 2西班牙瓦伦西亚大学UBIC研究小组;科学,CEU Cardinal Herrera,西班牙瓦伦西亚46115; (O.J.A.-M。); (A.B.)瓦伦西亚大学医院卫生研究所(包括),瓦伦西亚大学医学系,西班牙瓦伦西亚46010; 5 Biom中心;电话。: +34-963983853
大脑计算机界面(BCIS)有可能通过在大脑和计算机系统之间建立直接联系来彻底改变人类计算机的互动。最近的研究越来越关注BCIS的实际应用 - 例如,仅通过思想控制家庭设备。使用脑电图(EEG)的非侵入性BCI之一利用事件相关电位(ERP)来响应目标刺激,并在控制家庭设备方面表现出了希望。在本文中,我们提供了一个基于在线ERP的BCI的全面数据集,用于控制各种刺激呈现环境中的各种家用设备。我们从总共84位受试者中收集了在线BCI数据,其中60名受试者控制了三种类型的设备(电视:30,门锁:15和电灯:15),每个设备4个功能,14位受试者通过LCD监控器控制了6个功能的蓝牙扬声器,并通过LCD监控器进行4个功能,并通过4个受试者控制空调的空调,并通过4个功能通过4个功能。使用数据集,我们旨在通过采用两种不同方法的转移学习来解决ERP中受试者间可变性的问题。第一种方法是“范式转移学习”,旨在将模型推广到相同的刺激呈现范式内。第二种方法是“交叉范式转移学习”,涉及将模型从4级LCD环境扩展到不同的范式。结果表明,转移学习可以有效地增强基于ERP的跨不同受试者和环境的ERP的普遍性。
摘要:在基于脑电图 (EEG) 的跨受试者运动想象 (MI) 分类任务中,设备和受试者问题会导致与时间相关的数据分布偏移问题。在单源到单目标 (STS) MI 分类任务中,这种偏移问题必然会导致源域和目标域之间整体数据分布差异的增加,从而导致分类准确率下降。本文提出了一种新颖的多子域自适应方法 (MSDAN) 来解决偏移问题并提高传统方法的分类准确率。在所提出的 MSDAN 中,通过测量源子域和目标子域之间的分布差异来获得与类相关和与时间相关的子域(由不同的数据标签和会话标签划分)中的自适应损失。然后,同时最小化 MSDAN 损失函数中的自适应和分类损失。为了说明所提方法的应用价值,我们的方法被用于解决脑机接口 (BCI) 竞赛 III-IVa 数据集的数据分析的 STS MI 分类任务。实验结果表明,与其他方法相比,
计算全脑模型基于局部模型,区域间功能相互作用以及指定区域间连接强度的结构连接组来描述每个大脑区域的静息活动。损害了构成这些模型的骨干的健康构成构成连接组,并在区域间功能相互作用中产生巨大变化。这些相互作用通常是通过将两个大脑区域之间的活动的时间序列相关联,该过程称为静止功能连接。我们表明,添加有关患者病变产生的结构断开信息的信息,以前是先前对来自大量健康受试者的结构和功能数据进行培训的全脑模型,可以预测患者的静止功能连接性,并直接适合该模型的数据,直接适合患者的数据(Pearson Earleration = 0.37 = 0.37 = 0.37;均一差异= 0.005)。此外,模型动力学再现了基于功能连通性的措施,这些措施通常是中风患者中的MAL和特异性分离这些异常的措施。因此,尽管全脑模型通常涉及大量自由参数,但结果表明,即使固定了这些参数,该模型也会从与训练模型的人群截然不同的人群中重现。除了验证模型外,这些结果还表明,该模型可以机械地捕获解剖结构与人脑的功能活性之间的关系。
摘要 目的:磁共振成像 (MRI) 中的噪声会对患者产生负面影响。我们评估了以 20 kHz 切换的静音梯度线圈与 7 T 1 加权磁化制备的快速梯度回波 (MPRAGE) 序列的结合。方法:五名健康受试者(21-29 岁;三名女性)之前没有接受过 7-T MRI 检查,分别接受了两次安静 MPRAGE (Q-MPRAGE) 和常规 MPRAGE (C-MPRAGE) 序列。两名神经放射科医生对图像质量进行了定量和定性评估。所有受试者在每个序列之后立即以及整个检查(延迟)后(0-10 的量表)客观测量声级并主观评分。所有受试者还报告了舒适度、总体体验和再次接受该序列的意愿。结果:与 C-MPRAGE 相比,Q-MPRAGE 具有更高的信噪比 (10%;p = 0.012) 和更低的对比噪声比 (20%;p < 0.001),并且图像质量良好。Q-MPRAGE 产生的噪音水平低 27 dB (76 对 103 dB)。受试者报告 Q-MPRAGE 的即时 (4.4 ± 1.4 对 6.4 ± 1.3;p = 0.007) 和延迟 (4.6 ± 1.4 对 6.3 ± 1.3;p = 0.005) 的噪音水平较低,而他们评定的舒适度 (7.4 ± 1.0 对 6.1 ± 1.7;p = 0.016) 和总体体验 (7.6 ± 1.0 对 6.0 ± 0.9;p = 0.005) 较高。再次接受该序列的意愿也更高,但并不显著(8.1 ± 1.0 对比 7.2 ± 1.3;p = 0.066)。结论:与 7 T 的 C-MPRAGE 相比,使用静音梯度线圈的 Q-MPRAGE 可将声级降低 27 dB,同时具有可接受至良好的图像质量以及更安静、更愉快的受试者体验。关键词:声学、健康志愿者、磁共振成像、神经成像、噪音
神经调节是旨在调节弥漫性神经元活性以实现治疗作用的技术的集合。通过在大脑中应用外部能量(例如电流,磁场,光或超声)来获得调制时,它被称为神经刺激1。非侵入性脑刺激(NIBSS)技术,例如电击疗法(ECT),经颅磁刺激(TMS)和经颅电刺激(TES),对大脑发挥可测量的结构和功能作用。这些影响包括增加神经可塑性2,大脑结构3和连通性4的变化以及脑衍生的神经营养因子(BDNF)水平5的恢复。某些NIBSS溶液是FDA批准的,用于治疗各种脑部疾病,包括抑郁症6和强迫症7(OCD),强调了神经调节的治疗潜力。
在地下矿山中使用电池电动汽车(BEV)比传统使用柴油机提供了重大好处:通过产生零有毒气体和柴油机颗粒物(DPM)排放并降低热量和噪音水平,更健康的工作条件。其他好处包括潜在的降低通风和空调成本以及潜在的温室气体排放量。尽管如此,在地下地雷中使用BEV仍然有限。许多原因之一是,BEV的消防安全仍然不太了解。BEV的火灾风险与柴油机的火灾风险不同。BEV不带大量可燃液体(柴油燃料和发动机机油)。 他们也没有热排气系统。 但是,由于最初的火灾被扑灭后电池重新燃烧的可能性,BEV大火熄灭了。 目前,没有足够的数据表明,与地下矿山中的柴油大火相比,BEV大火更普遍或更危险,并且没有与地下矿山BEV火灾有关的记录死亡。 尽管如此,在地下矿山中,BEV大火的后果比柴油大火更高,因为熄灭要困难得多。 因此,地下矿山对BEV消防安全有足够的了解至关重要。 本文概述了防止热失控的措施,这是BEV火灾的主要原因,以及如何手动扑灭BEV火灾并管理地下地雷的电池充电防护区。BEV不带大量可燃液体(柴油燃料和发动机机油)。他们也没有热排气系统。但是,由于最初的火灾被扑灭后电池重新燃烧的可能性,BEV大火熄灭了。目前,没有足够的数据表明,与地下矿山中的柴油大火相比,BEV大火更普遍或更危险,并且没有与地下矿山BEV火灾有关的记录死亡。尽管如此,在地下矿山中,BEV大火的后果比柴油大火更高,因为熄灭要困难得多。因此,地下矿山对BEV消防安全有足够的了解至关重要。本文概述了防止热失控的措施,这是BEV火灾的主要原因,以及如何手动扑灭BEV火灾并管理地下地雷的电池充电防护区。