上游各州认识到,要使系统保持平衡,需要所有流域州和用水部门的合作和努力。因此,我们随时准备参与和支持整个流域的努力,以解决持续的干旱水文和枯竭的储存条件。然而,上游各州保护关键水库高程的选项有限。上游流域自然受限于河流供应的减少,而之前的干旱应对行动正在消耗 661,000 英亩英尺的上游储存量。在当前条件下,我们的用水者已经遭受长期短缺,导致无补偿的优先管理,其中包括削减我们每个州的众多现有完善权利。
S+C 集团参与的最具挑战性的项目之一是研究和开发一种新材料,以使 Midrex ® 重整器和 HyL ® PGH 能够以更高的速度运行,而在此之前,这些材料受限于可用材料的冶金学约束。利用集团的协同作用、在极高温度应用合金开发过程中获得的知识以及多学科方法,S+C 向市场推出了最新一代合金 Centralloy ® 60 HT D 和 Centralloy ® HT E。使用铝作为合金元素的结果很简单,但这并不反映实现所需的最高抗氧化和抗蠕变性的技术复杂性。这两种合金的优异性能为 DR 工厂的运行设定了新的极限。
基于光束中经典和量子相关性的技术(如鬼成像)使我们能够克服传统成像和传感协议的许多局限性。尽管这些技术有诸多优势,但它们的应用往往受限于目标物体的位置和纵向延伸未知的实际场景。在本文中,我们提出并通过实验证明了一种名为光场鬼成像的成像技术,该技术利用光相关性和光场成像原理,能够在广泛的应用中超越鬼成像的局限性。值得注意的是,我们的技术消除了对物体距离的先验知识的要求,从而可以在后处理中重新聚焦,并可以在保留鬼成像协议的所有优点的同时执行三维成像。
抽水蓄能是吉瓦级规模部署的储能技术之一,除目前电网普遍建设的按日调节方式建设的电站外,在按年调节方式建设的水电站中安装水泵,实现季节性抽水蓄能(SPS)。与现有的日调节方式抽水蓄能电站相比,季节性储能规模更大,水位高度要求一般在200米以上。季节性抽水蓄能的寿命较长,可达50年,转换效率较高,可达70%~95% [7]。但大规模季节性抽水蓄能受限于场地条件,选址难度较大,实际工程应用需对地质环境条件进行前期调研。
无线皮层内脑机接口 (iBCI) 的功效部分受限于记录通道的数量,而记录通道的数量又受植入式系统功率预算的限制。设计能够提供当今有线神经接口的高质量记录的无线 iBCI 可能会导致无意中过度设计,而这又会以牺牲功耗和可扩展性为代价。我们在这里分析了从恒河猴实验性 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者那里收集的神经信号,以了解信号质量和解码器性能之间的权衡。我们为临床可行的 iBCI 提出了一种高效的硬件设计,并建议可以大大放宽当前记录 iBCI 的电路设计参数而不会损失性能。
无线皮层内脑机接口 (iBCI) 的功效部分受限于记录通道的数量,而记录通道的数量又受植入式系统功率预算的限制。设计能够提供当今有线神经接口的高质量记录的无线 iBCI 可能会导致无意中过度设计,而这又会以牺牲功耗和可扩展性为代价。我们在这里分析了从恒河猴实验性 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者那里收集的神经信号,以了解信号质量和解码器性能之间的权衡。我们为临床可行的 iBCI 提出了一种高效的硬件设计,并建议可以大大放宽当前记录 iBCI 的电路设计参数而不会损失性能。
我们考虑将单个对象分配给有偿代理的问题。代理的偏好不一定是拟线性的。我们用优先规则来描述满足成对策略防护性和非强加性的规则类。即使我们将成对策略防护性替换为较弱的有效成对策略防护性或较强的群体策略防护性,我们的描述结果仍然有效。通过利用我们的描述,我们可以确定同时满足以下属性的规则类:(i) 附加于 ,(ii) 福利连续 ,(iii) 最低限度公平 ,(iv) 在满足两个属性的规则类中受限于效率 ,或 (v) 在满足属性的规则类中收入不受支配,并发现在成对策略防护性下效率、公平和收入最大化的最低属性之间的张力。
脑机接口 (BCI) 研究已在众多应用领域取得了重大进展,包括让瘫痪患者控制机械臂 [1]、改善睡眠质量 [2] 和减轻重度抑郁症的影响 [3]。然而,由于两个关键因素,当前最先进的 BCI 通常无法很好地推广到日常使用。首先,当前的 BCI 依赖于根据每个人的训练数据进行微调的模型 [4];这使得在为每个人收集到大量训练数据之前很难实现 BCI。其次,大多数现有的 BCI 研究局限于实验室,其中运动受限于研究任务,因此不能准确地表示神经信号的多样性。一些研究已经在自然环境中训练了 BCI [5,6]——让受试者自由移动的环境——但必须完成更多的转化工作才能将实验室的进展转化为现实世界。
对自然声音刺激的脑电图反应进行分类具有理论和实践意义,但标准方法受限于对非常短的声音片段(几秒或更短)的各个通道分别处理。最近的发展表明,通过从脑电图中提取频谱成分并使用卷积神经网络(CNN),可以对音乐刺激(约 2 分钟)进行分类。本文提出了一种有效的方法,将原始脑电图信号映射到所听的单首歌曲,以进行端到端分类。脑电图通道被视为 [ 通道 × 样本 ] 图像图块的一个维度,并使用 CNN 对图像进行分类。我们的实验结果(88.7%)可与最新方法(85.0%)相媲美,但我们的分类任务更具挑战性,因为我们需要处理感知质量彼此相似且参与者不熟悉的较长刺激。我们还采用了使用预先训练的 ResNet-50 的迁移学习方案,证实了尽管图像域彼此不相关,但迁移学习仍然有效。
摘要 自然系统通过高效和宽带能量捕获来驱动光合作用的高能反应。过渡金属光催化剂同样将光转化为化学反应性,但受限于光操作并且需要蓝光至紫外激发。在光合作用中,光捕获和反应性都通过分离到不同的位点得到了优化。受这种模块化架构的启发,我们通过将光合集光蛋白 R-藻红蛋白 (RPE) 共价连接到过渡金属光催化剂三(2,2 0-联吡啶)钌(II) ([Ru(bpy) 3 ] 2+ ) 来合成生物混合光催化剂。光谱研究发现,吸收的光能有效地从 RPE 转移到 [Ru(bpy) 3 ] 2+ 。生物混合光催化剂的实用性通过增加硫醇-烯偶联反应和半胱氨酰脱硫反应的产率来证明,包括在红光波长下恢复反应性,其中[Ru(bpy) 3 ] 2+单独不吸收。