体内哺乳动物干细胞中的G1/s过渡由细胞大小Shicong Xie 1,Shuyuan Zhang 1,Gustavo de Medeiros 2,Prisca Liberali 2&Prisca Liberali 2&Jan M. Skotheim 1,3* 4058巴塞尔,瑞士3 Chan-Zuckerberg倡议,旧金山,CA 94158,美国 *通讯作者(skotheim@stanford.edu)抽象的细胞生长和除法必须协调以保持稳定的细胞大小,但是在多颗粒组织中该协调性如何保持不清楚。在单细胞真核生物中,自主细胞大小控制机制将细胞生长和分裂造成,几乎没有细胞外输入。然而,在多细胞组织中,我们不知道自主细胞大小控制机制是否以相同的方式运行,或者细胞生长和细胞周期进程是否通过细胞超支信号分别控制。在这里,我们通过跟踪成年小鼠中生长的单个表皮干细胞来解决这个问题。我们发现,依赖RB途径的细胞自主尺寸控制机制可以根据单元的电流大小设置S相进入的时间。细胞微环境中的细胞 - 超支变化会影响细胞生长速率,但不会影响这种自主耦合。 我们的工作重新评估了复杂的后生组织内细胞周期调节的长期模型,并鉴定出细胞自主的大小控制是调节体内细胞分裂的关键机制,从而是干细胞异质性的主要贡献者。细胞微环境中的细胞 - 超支变化会影响细胞生长速率,但不会影响这种自主耦合。我们的工作重新评估了复杂的后生组织内细胞周期调节的长期模型,并鉴定出细胞自主的大小控制是调节体内细胞分裂的关键机制,从而是干细胞异质性的主要贡献者。
主动目标正在积极地在所需的波长频谱中发射超短脉冲,可通过相机传感器检测到。这些主动目标需要一个驱动程序控制单元,该单元融合了传感摄像机网络。主动目标的最大优势是它们对污染和尘土飞扬的环境的稳健性,因为由于发光特性,信噪比可以保持高水平。另一个很大的优势是它们几乎可以将标记放置在任何受限空间中,因为可以定制和集成在很小的足迹上。即使是全面地面的特殊目标,也可以使用机械应力的最大耐加度度。主动目标主要用于高速自主应用中。
鉴于传感器数量和航天器总线内部的受限空间,狄奥尼号是这种尺寸的航天器中设计、建造和测试难度较大的航天器之一。它有五种科学仪器。其中四种仪器由戈达德内部研究与开发 (IRAD) 计划资助开发。它们包括经过飞行验证的双磁通门磁力仪、中性质谱仪 (NMS) 和双静电分析仪 (DESA),它们将直接测量电离层产生的地球电场的特定成分。狄奥尼号还包括一种称为航天器电位传感器 (SPS) 的技术演示仪器,它将进行测量,以帮助表征航天器的充电
人工智能 (AI) 一直是信息和通信技术 (ICT) 领域最热门的话题之一。人工智能推动了许多先进系统的发展,例如机器人技术。人工智能过去仅限于数字信号处理,例如文本处理、图像对象识别和语音识别。然而,从整体上考虑计算机科学时,信号处理只是该领域的一小部分。人工智能应用已扩展到机器人、物联网 (IoT)、智慧城市等。在 [1] 中,Miriyev 和 Kovac 将人工智能分为处理信号的数字人工智能和包括物理机器人在内的物理人工智能。在本文中,我们探讨了物理人工智能的概念,并将其扩展到集成物理人工智能(如机器人)或分布式物理人工智能(如物联网)。在 [1] 中,作者将集成物理人工智能视为物理人工智能,其组件集中在一起并位于受限空间中。我们也提出分布式物理人工智能作为一种物理人工智能,其组件可以分布在广阔的空间中。
双向放大器 (BDA) 是室内或隧道通信的常见解决方案。双向放大器系统由一个或多个位于受限环境内的放大器组成,并依次连接到外部天线网络。外部天线通常位于建筑物屋顶或隧道口,接收来自外部无线电站点的信号。然后,BDA 放大信号并将其重新传输到建筑物或隧道中。建筑物内的用户单元可以使用 BDA 扩展其便携式无线电覆盖范围并与外部系统通信。BDA 监听受限空间内的传入流量,对其进行放大并将其重新传输到外部系统,因此是双向的。BDA 相对便宜,但是,电缆、天线、滤波器和电源等支持基础设施会迅速增加总安装成本。此外,除非正确调整 BDA,否则它们可能会对自身、其他 BDA 或现有无线电系统产生干扰问题。
确保空间有限的系统中的适当细胞生长,例如微流体技术,对于一致的培养比较和结果至关重要。在本报告中,我们主要介绍SH-SY5Y细胞在具有不同表面积的圆形聚碳酸酯圆形杂种上的增殖。,我们选择了SH-SY5Y细胞,因为它们在神经模型生成疾病的研究中的广泛应用。我们的研究表明,该菜的表面积与细胞生长速率之间存在明确的联系。显然是,直径为10 mm或更多的腔室的细胞生长与标准碟培养物的匹配。观察结果表明,随着腔室直径降低,SH-SY5Y细胞的生长也明显降低,即使具有相同的初始播种密度。此外,我们比较了对HelagFP细胞的影响,后者表现出与SH-SY5Y细胞相似的行为,而16HBE14σ细胞在各种直径下显示出有效的增殖。此外,我们检查了直径为12 mm的密封室中SH-Sy5Y细胞的发展,以观察其在有限的气体交换条件下的生长。使用实时微观范围持续监测细胞的效力以捕获动力学。结果表明,OBSES细胞生长与标准培养皿的生长相当。