Cas12a(以前称为 Cpf1)核酸酶在基因组工程中的广泛使用受到它们需要相当长的 TTTV 原型间隔区相邻基序 (PAM) 序列的限制。在这里,我们旨在放宽这些 PAM 限制,并通过将其相应的 RR 和 RVR 变体的突变与改变的 PAM 特异性相结合,生成了在哺乳动物和植物细胞中活跃的四种 Cas12a 直系同源物的新型 PAM 突变变体。选择表现出最高活性的 LbCas12a-RVRR,使用基于质粒的测定法深入表征其在哺乳动物细胞中的 PAM 偏好。LbCas12a-RVRR 的共识 PAM 序列类似于 TNTN 基序,但也包括 TACV、TTCV CTCV 和 CCCV。经发现,改良的 LbCas12a (impLbCas12a) 中的 D156R 突变以 PAM 依赖的方式进一步提高了该变体的活性。由于 impLbCas12a 和最近报道的 enAsCas12a 变体的 PAM 偏好重叠但仍有差异,它们相互补充,为基因组编辑和转录组调节应用提供了更高的效率。
摘要 DNA 拓扑异构酶 II α (170 kDa, TOP2 α /170) 诱导增殖细胞中瞬时 DNA 双链断裂,以解决染色体凝聚、复制和分离过程中的 DNA 拓扑纠缠。因此,TOP2 α /170 是抗癌药物的主要靶点,其临床疗效常常因化学耐药性而受到影响。尽管已经确定了许多耐药机制,但人类癌细胞系对 TOP2 α 界面抑制剂/毒药的获得性耐药通常与 Top2 α /170 表达水平的降低有关。我们实验室最近的研究,结合其他研究人员的早期发现,支持以下假设:对 TOP2 α 靶向药物的获得性耐药的主要机制是由于替代的 RNA 加工/剪接。具体而言,已报道了几种 TOP2 α mRNA 剪接变体,它们保留了内含子,并被翻译成缺乏核定位序列的截短 TOP2 α 异构体,随后导致核质分布失调。此外,内含子保留可能导致截短异构体缺乏核定位序列和活性位点酪氨酸 (Tyr805),而活性位点酪氨酸是形成酶-DNA 共价复合物所必需的,并且在存在 TOP2 α 靶向药物的情况下诱导 DNA 损伤。最终,这些截短的 TOP2 α 异构体导致药物对细胞核中的 TOP2 α 的活性降低并表现出耐药性。因此,对调节 TOP2 α 前 mRNA 的替代 RNA 加工的机制的完整表征可能会产生新的策略来规避获得性耐药性。此外,新型 TOP2 α 剪接变体和截短的 TOP2 α 同工型可用作药物耐药性、预后和/或直接未来 TOP2 α 靶向治疗的生物标志物。
摘要:证明了一些有限表示群由于其 SL 2 ( C ) 特征品种而与代数曲面相关的表示理论。我们利用代数曲面的 Enriques–Kodaira 分类和相关的拓扑工具来明确此类曲面。我们研究了 SL 2 ( C ) 特征品种与拓扑量子计算 (TQC) 的联系,作为任意子概念的替代方案。Hopf 链接 H 是我们对 TQC 观点的核心,其特征品种是 Del Pezzo 曲面 f H (交换子的迹)。从我们之前工作中的三叶结衍生而来的量子点和双量子比特魔法状态计算可以看作来自 Hopf 链接的 TQC。一些二生成 Bianchi 群的特征品种以及奇异纤维 ˜ E 6 和 ˜ D 4 的基本群的特征品种包含 f H 。与 K 3 曲面双有理等价的曲面是它们的特征簇的另一种复合体。
对囊性纤维化变体的字母敏感性致病性预测Eli Fritz McDonald 1,2,Kathryn E. Oliver 3,4,Jonathan P. Schlebach 5,Jens Meiler 1,2,6,7**生物学,范德比尔特大学,纳什维尔,田纳西州37240,美国3美国埃默里大学医学院儿科学系,亚特兰大,佐治亚州30322,美国4囊性纤维化和航空疾病中心,亚特兰大和埃默里大学的儿童医疗保健,亚特兰大大学,亚特兰大,亚特兰大,加利福尼亚州30322,美国5个部门。范德比尔特大学药理学,纳什维尔,田纳西州纳什维尔37240,美国7莱比锡大学药物发现研究所,莱比锡大学,莱比锡,萨克斯04103,德国8号,8 8日,纳什维尔大学生物科学系,纳什维尔,田纳西州37235,美国37235作者:JM(jens@meilerlab.org),lp(lars.plate@vanderbilt.edu)囊性纤维化跨膜电导调节剂基因(CFTR)中的摘要变体导致囊性纤维化 - 一种致死性自身骨膜衰减障碍。在CFTR蛋白中改变单个氨基酸的错义变体是最常见的囊性纤维化变体之一,但是迄今为止,用于准确预测错义变体的分子后果的工具已限制为迄今为止。字母启示(AM)是一项新技术,可预测基于双重学识料蛋白质结构和进化特征的错义变体的致病性。在这里,我们评估了AM预测CFTR错义变种的致病性的能力。AM预测总体CFTR残基的致病性很高,从而在CFTR2.org数据库的CF变体上产生了高的假阳性率和公平分类性能。AM致病性评分与CF患者的致病性指标适度相关,包括汗液氯化物水平,胰腺功能不全率和铜绿假单胞菌感染率。相关性也与CFTR运输和体外折叠能力相关。相比之下,AM分数与CFTR通道功能在体外良好相关 - 尽管在训练过程中缺乏此类数据,但表明双重结构和进化训练方法学习了重要的功能信息。跨指标表明AM的不同性能可能会确定CFTR中的多态性是否是隐性CF变体,但无法区分机理效应或病理生理学的性质。最后,AM预测提供了有限的实用性,以告知CF变体的药理响应,即Theratype。开发新方法以区分CFTR变体的生化和药理学特性,仍然需要完善新兴精度CF治疗剂的靶向。
稀缺。我们发现,在接收剂量2后约1个月测量的中和抗体的中和抗体水平有可能用于预测OMICRON波浪中随后突破感染的风险。如Kaplan-Meier图所示(图3),在SVNT上方和低于95%的儿童的临床保护持续时间方面存在明显差异。我们发现,SVNT水平<95%的患者的小儿队列的中位保护持续时间为3.4个月,而SVNT水平的患者为5.1个月> 95%> 95%的剂量2。在调整年龄和性别后,Cox回归分析证实,与SVNT水平<95%相比,SVNT水平> 95%的儿童> 95%的儿童为43%(HR:0.57,95%CI:0.37至0.88)。SVNT剂量后2的SVNT水平每增加1%,在我们的小儿队列中,突破性感染的风险降低了7.8%。我们
人类胰岛素基因中的显性突变可能导致胰腺B细胞功能障碍和由于突变蛋白的毒性折叠而导致的麦芽细胞。类似于经典的小鼠模型(Akita小鼠),这种单基因综合征突出了人类B细胞对蛋白质折叠和异常聚集引起的内部抗性应激的敏感性。临床突变直接或间接扰动天然的二二个配对。尽管大多数突变引入或去除半胱氨酸(在任何一种情况下都导致了未配对的残基),而非半胱氨酸相关的突变则可以识别出折叠效率的关键决定因素。对这种突变的研究表明,不仅受到其结构和功能的限制,而且还受到其单链前体对可折叠性受损的敏感性的限制。2013年欧洲生化社会联合会。由Elsevier B.V.保留所有权利。
每个骑手的舒适,安全和节省。班加罗尔,2025年1月14日:Greaves Cotton Limited的E-Mobilition Cotton Limited Electric Mobilition Limited(GEML)推出了Ampere Magnus Neo,这是其Magnus Electric Scooter的增强变体,其承诺“更多的力量”。建立在其Magnus系列的遗产上,Magnus Neo旨在使环保通勤更容易访问,时尚且负担得起。Magnus Neo代表了Ampere的Magnus Ex的演变,并将提供更多的风格,更多的力量,更多的力量,更多的安全性,安全性和更多的节省。Magnus Neo将从1月17日开始在德里的2025年Auto Expo Expo中心舞台。展示了其出色的耐力,这家踏板车从班加罗尔(Bengaluru)到德里(Delhi)行驶了2,000多公里,证明了它在路上的勇气,甚至在击中展览楼上。Greaves Electric Mobility Limited执行董事兼首席执行官Kunnakavil Vijaya Kumar说:“马格努斯(Magnus)赢得了客户的信任和热爱,这一新一代体现了我们制造“ Har Gully Electric”的愿景,推动了“ Har Gully Electric”,推动了Eco-Frift fimher forco forco forco forco forco forco forco。建立在马格努斯(Magnus Ex)的成功基础上,马格努斯Neo(Magnus Neo)结合了先进的技术,为日常通勤者提供了增强的功能。这款新的踏板车是为了满足客户不断变化的需求,同时倡导环保运输选项,这有助于绿色的未来。”更多的力量:Magnus Neo提供了这些关键特征无与伦比的骑行体验:
广泛的流行病学证据确定脂蛋白(A)(LPA)血液水平是心血管疾病(CVD)的独立危险因素。与LPA相关的总体风险似乎是适度的,风险程度可能是由其他因素(例如低密度脂蛋白(LDL)水平和/或激素状态)介导的。随着时间的流逝,一个人的LPA水平保持相对稳定;但是,众所周知,不同人之间的水平最高可达1000倍,这很可能是由于遗传学造成的。LPA基因中的单核苷酸变体LPA RS3798220与LPA水平升高和心血管疾病的风险增加有关。这种变体在氨基酸位置4399的异亮氨酸替代蛋氨酸,也称为I4399M。孟德尔随机研究支持了以下假设:这种遗传变异以及随后的LPA水平的增加是心血管疾病的原因。
视网膜母细胞瘤(RB)是由于RB1肿瘤抑制基因的双重失活而发生的最常见的小儿眼肿瘤。rb可能是单侧的或双侧的,在50%的病例中是遗传性的。RB1基因的灭活可能是由于总重排(20%)或小长度变化(80%)而发生的:单核苷酸取代(SNV)和插入/缺失(Indels)。我们分析了在数据库中注释的生发起源的SNV和Indels,http://rb1-lovd.d-lohmann.de,以找到不同变体的频率,它们与蛋白质PRB功能领域的相关性和临床表现。分析的突变变体的数量为2103,其中34%是胡说八道,34%的indels,22%的剪接场所和10%的错位。所有这些变体主要产生双侧RB(88%),它们与PRB结构域相关的频率和分布在双侧(BI)和单侧遗传(UG)RB之间有所不同。无意义的变体在BI与UG中更频繁地发生,而在UG与BI中,错义变体更为频繁。indels和剪接位点变体没有显着差异。突变变体的最常见的PRB位置是在袖珍域(E2F转录因子的结合位点),胡说八道的58%,64%的失误,50%的剪接位点和45%的Indels。最突变的共有序列的切片位点是供体的第一个核苷酸,这是剪接过程的驱动力。关键词双侧 /单侧视网膜母细胞瘤,RB1变体,PRB结构域,简介视网膜细胞瘤(RB)是最常见的眼科小儿肿瘤。2024)。结论:RB中变体的最高百分比对应于胡说八道和indels,主要影响口袋结构域,这是PRB调节过程的主要功能部位,这些结果表明视网膜母细胞瘤中最具致病性变体的占主导地位。它是通过双重抑制RB1基因在一个或多个视网膜前体细胞中抑制RB1基因而发生的,从而诱导了不受控制的细胞分裂。rb是发育肿瘤的原型,因为它发生在产前年龄到5岁。它可以显示为单侧(60%)或双侧(40%),很少像三边形(在眼睛中,大多在松果腺中)。rb的发生率大约为每年在世界上活着的约20,000名儿童(Dimaras 2012),据报道,美国和欧洲的发病率分别为每百万分之12和4.0(Fernandes等人(Fernandes等)2018; Gianni Virgili等。视网膜母细胞瘤肿瘤在50%的病例中是遗传性的,包括所有双侧病例和15-25%的单侧病例,其中大多数是非遗传性的。在遗传性RB中,第一个RB1突变是种系,第二个是躯体的,在非遗传性RB中,这两个突变都是躯体。遗传RB的百分之十是继承,而30%的“从头”出现,平均年龄为
AU:请确认所有标题级别均正确显示:成簇的规律间隔短回文重复序列 (CRISPR)-Cas12a 系统是基因编辑的强大工具;然而,crRNA-DNA 错配可能会引起不必要的切割事件,尤其是在 PAM 的远端。为了最大限度地减少这种限制,我们通过修改与靶 DNA 和 crRNA 链相互作用的氨基酸残基,设计了一种携带突变 S186A/R301A/T315A/Q1014A/K414A 的超保真 AsCas12a 变体(称为 HyperFi-As)。HyperFi-As 保留了与人类细胞中的野生型 AsCas12a (AsCas12aWT) 相当的靶向活性。我们证明 HyperFi-As 显著降低了人类细胞中的脱靶效应,并且与野生型相比,HyperFi-As 对 PAM 远端区域位置的错配容忍度明显较低。此外,采用改进的适当恒定力单分子 DNA 解拉链分析来评估 CRISPR/Cas 核糖核蛋白 (RNP) 复合物的稳定性和瞬态阶段。在 DNA-Cas12a-crRNA 复合物的解体过程中敏感地检测到了多种状态。在脱靶 DNA 底物上,与 AsCas12aWT 相比,HyperFi-As-crRNA 更难维持 R 环复合物状态,这可以准确解释为什么 HyperFi-As 在人类细胞中具有较低的脱靶效应。我们的研究结果提供了一种具有低脱靶效应的新型 AsCas12a 变体,尤其能够处理 PAM 远端区域的高脱靶。在单分子水平上,我们还揭示了 AsCas12a 变体在脱靶位点的行为方式,而用于评估 CRISPR/Cas RNP 复合物多种状态的解压缩分析可能对深入了解 CRISPR/Cas 的行为方式以及将来如何对其进行工程改造大有帮助。