量子状态的实时和想象的时间演变是研究量子动态,准备接地状态或计算热力学可观察物的强大工具。在近期设备上,各种量子时间演变是这些任务的有前途的候选人,因为可以量身定制所需的电路模型以权衡可用的设备功能和近似准确性。但是,即使可以可靠地执行电路,由于量子几何张量(QGT)的计算,变异量子时间演化算法对于相关系统大小而迅速变得不可行。在这项工作中,我们通过利用双重公式来规避对QGT的明确评估来解决这个缩放问题。我们演示了海森伯格汉密尔顿的时间演变的算法,并表明它以标准变化量子时间演化算法的成本的一小部分准确地重现了系统动力学。作为量子假想时间演变的应用,我们计算了Heisenberg模型的热力学观察到的每个位置的能量。
摘要:在量子计算中,什么贡献了量子计算的至高无上?候选者之一是量子相干性,因为它是各种量子算法中使用的资源。我们揭示量子相干性有助于训练Y。du et al。,arxiv:1809.06056(2018)。详细说明,在差异量子感知器的训练的第一部分中,总系统的量子相干性集中在指数寄存器中,第二部分中,Grover算法消耗了指数寄存器中的量子相干性。这意味着在训练变异量子感知器时需要量子相干分布和量子相干性耗竭。此外,我们研究了在变异量子感知训练期间纠缠的行为。我们表明,由于Grover操作仅在索引寄存器上执行,因此功能和索引寄存器之间的双方同意下降。另外,我们揭示了索引寄存器的两个量子位之间的同意随着变异量子感知器的训练而增加。
实时承诺(“RTC”):一种多周期安全约束机组承诺和调度模型,该模型在两小时十五分钟的优化期内以最低出价生产成本为基础同时优化负荷、运行储备和调节服务。优化将评估接下来以十五分钟为间隔的十个时间点。一小时内的每次 RTC 运行都应有一个标记,指示发布结果的时间;“RTC 00”、“RTC 15”、“RTC 30”和“RTC 45”分别在整点时以及整点后十五分钟、三十分钟和四十五分钟发布。每次 RTC 运行将为其预定发布时间后十五分钟和三十分钟开始的期间生成具有约束力的承诺指令,并将为优化期的剩余时间生成咨询性承诺指导。 RTC 15 还将建立每小时一次的外部交易时间表,而所有 RTC 运行均可在可变调度代理发电机总线上建立 15 分钟一次的外部交易时间表。有关 RTC 功能的其他信息,请参阅本 ISO 服务价目表第 4.4.2 节。