摘要 - 精确农业专注于自动杂草检测,以改善输入的使用并最大程度地减少除草剂的施用。提出的纸张概述了一个视觉变压器(VIT)模型,用于杂草检测,该模型应对农作物和杂草的相似之处,尤其是在复杂的,多样化的环境中,这是由于农作物和杂草的相似性而引起的。该模型是通过使用高分辨率无UAV图像在有机胡萝卜场上拍摄的具有农作物,杂草和背景的高分辨率的无UAV图像的图像进行训练的。由于包括自我注意力的VIT机制的性质,这使其能够捕获长期的空间依赖性,因此这种方法可以很好地将作物行与排间杂草间簇区分开。解决了类不平衡的问题并改善了斑块的通用性,使用了数据预处理技术(例如贴片提取和增强)。在分类中的精度为89.4%,超过了基本模型(例如u-Net和FCN)在实际应用条件下的效率,已证实了所提出的方法的有效性。这种提出的基于VIT的方法是作物管理的明显改善。并为选择性杂草控制提供了前景,以支持更可持续的农业。该模型也可以集成到基于AI的拖拉机中,以实现现场的实时杂草管理。
摘要:功率变压器在电能的有效和可靠分布中起关键作用。及时检测和诊断变压器中的故障对于预防昂贵的停机时间至关重要,确保安全和维持电力系统的完整性。变压器中故障识别的传统方法通常依赖于手动检查和定期测试,这可能是耗时的,劳动的,并且容易受到人为错误。机器学习(ML)技术提供了有前途的解决方案,用于自动化故障检测和功率变压器中的诊断过程。近年来,机器学习(ML)技术已成为自动化故障检测和功率变压器诊断过程的有希望的工具。mL算法可以分析从变压器传感器收集的大量数据,以识别指示各种故障的模式,包括绕组故障,绝缘降解和过热。通过利用ML,公用事业和运营商可以朝着预测和主动的维护策略迈进,最大程度地降低了灾难性失败的风险并优化资产绩效。本文对应用ML算法在功率变压器中的故障识别中的最新进步进行了全面综述。它探讨了各种ML技术,包括受监督和无监督的学习,强化学习和深度学习,突出了它们在变形金刚故障检测中的优势和局限性。本文讨论了数据可用性,模型的解释性和概括,以应对这些挑战并解锁ML在增强电力系统的可靠性和效率方面的全部潜力。
摘要 - 平词检测通常依赖于词汇相似性度量,这些度量无法识别语义相似但词汇不同的释义。为了解决这个问题,我们提出了一种混合方法,将词汇指纹(通过滚动哈希和奖励)与来自基于变压器的模型得出的语义嵌入在一起。我们计算词汇和语义相似性得分,然后使用分类模型组合它们。在这项工作中,我们还比较了多个分类算法 - 逻辑回归,随机森林和XGBoost,以选择最终系统的表现最佳分类器。此外,我们分析了每种算法组件的复杂性,包括滚动哈希,奖励和语义嵌入生成。在Quora问题对的子集上进行的实验数据集表明,我们的混合方法超过了单方法基准。交互式的精简应用显示了实时参数调整,并突出了系统的鲁棒性。这项工作说明了将表面水平的词汇模式和深层语义关系团结起来,为窃的检测提供了一种更全面,更可靠的方法。索引术语 - 平式检测,词汇指纹识别,销售嵌入,变压器模型,混合方法,综合性分析。
摘要:预期周围车辆的车道变化对于自动驾驶汽车的安全和ffi cient运行至关重要。以前的作品采用了不包含上下文信息的物理变量的用法。最近的方法依赖于行动识别模型,例如3D CNN和RNN,从而处理了复杂的体系结构。尽管变形金刚的出现成为行动识别,但采用变压器体系结构的作品有限。自主驾驶依赖于许多外部因素,包括驾驶员行为,天气状况,意外障碍和遵守Tra FFI C规则。但是,关键组件是能够准确预测自动驾驶汽车之前的车辆是否可能改变车道的能力。这项研究通过采用视频动作预测来应对自动驾驶汽车中车道变化预测(LCP)的关键挑战,并特别着重于整合视频视觉变形金刚(Vivit)。使用摄像头输入得出的小管嵌入,此方法利用了预防数据集,该数据集提供了对车辆轨迹和关键事件的详细注释。该方法超过了先前的模型,在通过1秒地平线预测车道变化方面达到了超过85%的测试精度。比较分析重点介绍了Vivit在视频数据中捕获时空依赖性方面的优越性,同时也需要更少的参数,从而提高了计算EFFI的效率。这项研究有助于通过展示Vivit在现实世界应用中的E FFI CACY并提倡进一步探索以提高车辆安全性和E FFI效率的进一步探索,从而有助于提高自主驾驶技术。
摘要 - Interactive分割旨在根据用户提供的点击从图像中提取感兴趣的对象。在现实世界应用中,通常需要分割一系列具有相同目标对象的图像。但是,现有方法通常一次处理一个图像,未能考虑图像的顺序性质。为了克服这一限制,我们提出了一种称为序列提示变压器(SPT)的新方法,该方法是第一个利用顺序图像信息进行交互式分割的方法。我们的模型包括两个关键组成部分:(1)序列提示变压器(SPT),用于从图像,点击和掩码序列中获取信息以提高准确的信息。(2)TOP-K提示选择(TPS)选择SPT的精确提示,以进一步增强分割效果。此外,我们创建ADE20K-SEQ基准测试,以更好地评估模型性能。我们在多个基准数据集上评估了我们的方法,并表明我们的模型超过了所有数据集的最新方法。索引项 - 计算机视觉,交互式图像分割
由于疾病的复杂性和有限的数据集大小,大脑MRI图像的阿尔茨海默氏病(AD)分类仍然是一个艰巨的任务。卷积神经网络(CNN)在使用MRI数据的脑部疾病分类方面表现出色,但它们与逮捕全球依赖性无能为力。此外,他们的结果不可解释,这是医疗领域的主要问题。变压器使用注意机制在各种视觉任务上都可以使用甚至超过CNN。本研究提出了一个新型的融合模型,该模型整合了Densenet-121和Vision Transformer的互补优势,以应对这些挑战。通过协同两种体系结构的优势,提出的融合模型提取了全面的图像特征。为了进一步优化特征歧视和计算效率,并入了基于外部分类器的特征选择技术。使用标准指标评估所提出的模型的性能,并与最先进的技术进行比较。结果表明,较高的分类精度为99%,融合模型有效地区分了各个AD阶段。此外,使用类激活图(CAM)可视化模型的决策过程,从而增强对模型预测的信任。我们还提供了Grad-CAM,Grad-CAM ++,Score-CAM和更快的得分摄像机可视化技术的视觉比较,以评估这些技术的性能,以突出显示AD分类的区分区域。
用于配电、输电和可再生能源应用的变压器,• 电抗器,包括并联、串联、饱和和平滑电抗器,• 变压器组件,包括套管、分接开关和配件。• 在此框架内,其他具体关注领域包括:
作者和审稿人:博士教授。StefanBrüggenwirth,Fraunhofer FHR,Wachtberg Dr.菲尔。Aljoscha Burchard,DFKI柏林教授博士。Tim Fingscheidt,Tu Braunschweig教授博士rer。nat。Holger Hoos,Rwth Aachen Dr.-ing。Klaus Illgner,K |镜头GmbH,SaarbrückenDr. rer。 nat。 Henrik Junklewitz,VDE电气工程协会Elektronik InformationStechnik E.V. 博士教授。 AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。 Katharina Von Knop,VDE电子信息技术协会E.V. 博士。 JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑Klaus Illgner,K |镜头GmbH,SaarbrückenDr. rer。nat。Henrik Junklewitz,VDE电气工程协会Elektronik InformationStechnik E.V. 博士教授。 AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。 Katharina Von Knop,VDE电子信息技术协会E.V. 博士。 JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑Henrik Junklewitz,VDE电气工程协会Elektronik InformationStechnik E.V.博士教授。AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。 Katharina Von Knop,VDE电子信息技术协会E.V. 博士。 JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。Katharina Von Knop,VDE电子信息技术协会E.V.博士。JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。nat。Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑Rainer Martin,Ruhr University Bochum博士教授。Dorothea Kolossa,Tu柏林教授。塞巴斯蒂安·莫勒(SebastianMöller) rer。nat。RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。nat。Vera Schmitt,Tu柏林教授博士。Ingo Siegert,Otto von Guericke University,Magdeburg博士。Volker Ziegler,诺基亚,慕尼黑Volker Ziegler,诺基亚,慕尼黑
摘要:传统的抗病毒肽(AVP)发现是一个耗时且昂贵的过程。这项研究介绍了AVP-GPT,这是一种新型的深度学习方法,利用基于变压器的语言模型和专门为AVP设计设计的多模式体系结构。AVP-GPT表现出非凡的效率,在GPU系统上产生了10,000个独特的肽,并在两天内识别潜在的AVP。在呼吸道合胞病毒(RSV)数据集(AVP-GPT)中预先训练,成功地适应了流感病毒(INFVA)和其他呼吸道病毒。与LSTM和SVM等最新模型相比,AVP-GPT的困惑性显着降低(2.09 vs. 16.13)和较高的AUC(0.90 vs. 0.82),表明肽序列序列预测和AVP分类。AVP-GPT产生了一套具有出色新颖性的肽,并确定了抗病毒成功率明显高于常规设计方法的候选者。值得注意的是,AVP-GPT对RSV和INFVA产生了新的肽,具有出色的效力,其中包括四种肽,其EC50值在0.02 um左右,这是迄今为止报告的最强的抗RSV活性。这些发现突出了AVP-GPT彻底改变AVP发现和开发的潜力,从而加速了新型抗病毒药。未来的研究可以探索AVP-GPT在其他病毒靶标上的应用,并研究替代AVP设计策略。
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组