。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年10月21日。 https://doi.org/10.1101/2024.01.18.576308 doi:Biorxiv Preprint
摘要:对晶体材料的化学空间,尤其是金属 - 有机框架(MOF)的实验探索,需要对大量反应的多组分控制,这是不可避免地会在手动执行时耗时和劳动力。为了在保持高可重复性的同时加速物料发现速率,我们开发了一种与机器人合成平台集成的机器学习算法,用于闭环探索多氧盐损坏金属金属 - 有机框架(POMOFS)的化学空间。通过使用从不确定性反馈实验获得的更新数据和基于其化学构成的POMOF分类的多类分类扩展,通过使用更新数据来优化极端梯度提升(XGBoost)模型。POMOF的机器人合成的数字签名由通用化学描述语言(χDL)表示,以精确记录合成步骤并增强可重复性。九种新颖的Pomofs,其中包括具有良好的可重复性的POM胺衍生物与各种醛的硫胺衍生物的胰岛化反应,这些pomofs具有源自单个配体的混合配体。此外,根据XGBoost模型绘制了化学空间图,其F1得分高于0.8。此外,合成的Pomofs的电化学性质表明,与分子POMS相比,较高的电子转移和Zn比率的直接效应,所使用的配体的类型以及POMOFS中的拓扑结构用于调节电子传递能力。■简介
Savoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。 37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利TriesteSavoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利Trieste
由于有希望的经验进步,使用神经网络的图算法最近引起了极大的兴趣。这激发了对神经网络如何通过关系数据复制推理步骤的进一步理解。在这项工作中,我们研究了变压器网络从理论角度模拟算法的能力。我们使用的体系结构是一个循环变压器,其额外的注意力头与图形相互作用。我们通过构造证明,该架构可以模拟单个算法,例如Dijkstra的最短路径,广度和深度搜索,以及Kosaraju的强烈连接组件以及同时的多种算法。网络中的参数数不会随输入图大小而增加,这意味着网络可以模拟任何图的上述算法。尽管有有限的精确度,但我们在解决方案中的模拟显示了一个限制。最后,当利用额外的注意力头时,我们显示出具有恒定宽度的图灵完整性结果。
计算机视觉的最新进展已大大改变了各种行业,从医疗保健到自动驾驶。本文对这些发展进行了全面的调查,特别关注基于深度学习和基于变压器的模型。我们探讨了基本概念和方法,包括特征提取,分类,细分和对象检测。本文还强调了计算机视觉框架和工具的演变,强调了卷积神经网络(CNN),生成模型和转移学习的贡献。补充 - 我们讨论了新兴趋势,例如视觉变形金刚和多模式学习,同时承认诸如数据稀缺和实时处理之类的持续挑战。通过深入分析,我们旨在为学者和专业人员提供对计算机视觉的当前状态和未来前景的详细了解。本文进一步研究了医疗保健,自动驾驶汽车,零售,农业和安全方面的特定应用,以说明计算机视觉技术如何重新定义既定实践并增强决策能力。
摘要。目的:本研究探讨颅内电极捕获的神经信号的语音解码。大多数先前的研究只能处理 2D 网格上的电极(即脑皮层电图或 ECoG 阵列)和来自单个患者的数据。我们的目标是设计一个深度学习模型架构,可以同时适应表面(ECoG)和深度(立体定向 EEG 或 sEEG)电极。该架构应允许使用来自多个参与者的数据进行训练,这些参与者的电极位置变化很大,并且训练后的模型应该在训练期间未见过的参与者身上表现良好。方法:我们提出了一种名为 SwinTW 的新型基于变压器的模型架构,该架构可以利用任意位置的电极在皮层上的 3D 位置而不是它们在 2D 网格上的位置来处理它们。我们使用来自单个参与者的数据训练特定于主题的模型,并利用来自多个参与者的数据训练多患者模型。主要结果:仅使用低密度 8x8 ECoG 数据的受试者特定模型在 N=43 名参与者中实现了高解码皮尔逊相关系数与地面实况频谱图 (PCC=0.817),优于我们之前的卷积 ResNet 模型和 3D Swin Transformer 模型。在每个参与者 (N=39) 中加入额外的条带、深度和网格电极可带来进一步的改进 (PCC=0.838)。对于只有 sEEG 电极的参与者 (N=9),受试者特定模型仍然具有可比的性能,平均 PCC=0.798。多受试者模型在看不见的参与者身上实现了高性能,在留一交叉验证中平均 PCC=0.765。意义:提出的 SwinTW 解码器使未来的语音神经假体能够利用任何对特定参与者来说临床上最佳或可行的电极位置,包括仅使用更常规的深度电极
变压器在一系列推理基准上表现出令人印象深刻的表现。评估这些能力是实际推理的结果的程度,现有工作重点是为行为研究开发复杂的基准标记。然而,这些研究并未提供有关推动观察到的capabilies的间隔机制的见解。为了提高我们对变形金刚之间机制的理解,我们对经过合成推理任务的跨前者进行了全面的机械分析。我们确定了模型用于解决任务的一组可解释机制,并使用相关性和因果关系来验证我们的发现。我们的结果表明,它实现了与并行操作的深度结合的复发机制,并存储中间的导致所选令牌位置。我们预计,我们在合成环境中确定的主题可以为变形金刚的更广泛的操作原理提供宝贵的见解,从而为理解更多的复合模型提供了基础。1
摘要 - 这项研究提出了一个基于变压器结构和自我发项机制的多模式融合框架多晶体。这种结构结合了非对比度计算机断层扫描(NCCT)图像的研究和进行中风治疗患者的出院诊断报告,使用了基于变压器结构方法的多种方法来预测中风治疗的功能结果。结果表明,单模式文本分类的性能明显优于单模态图像分类,但是多模式组合的效果优于任何单个模态。尽管变压器模型仅在成像数据上表现较差,但是当与临床元诊断信息结合使用时,两者都可以学习更好的互补信息,并为准确预测中风治疗效果做出良好的贡献。
其数据表中列出的Bourns®产品的特征和参数是基于实验室条件,并且有关产品适用于某些类型应用程序的陈述是基于Bourns对通用应用中典型要求的了解。用户应用程序中Bourns®产品的特性和参数可能因(i)Bourns®产品与用户应用程序中其他组件的组合而变化,或者(II)用户应用程序本身的环境。Bourns®产品的特性和参数在不同的应用中也可以并且确实有所不同,并且实际性能可能会随着时间而变化。用户应始终在其特定设备和应用程序中验证Bourns®产品的实际性能,并就其在其设备或应用中设计的额外测试保证金的数量做出独立的判断,以补偿实验室和现实世界中的差异。
多年来,基于监督学习的许多活动识别系统。有监督学习的一个问题是,它需要足够数量的标记数据进行培训。大多数标签任务都是用户本身完成的。这个过程相当耗时且乏味。尽管有一些研究试图使用基于积极的学习方法来协助注释过程,但这些方法仍然需要用户的努力,并且是不切实际的,尤其是在为老年人实施房屋时。在本文中,我们使用基于变压器的深度学习模型提出了一种自动标签方法,以标记日常活动。我们的方法利用了时空信息进行类注释。我们在公开可用的数据集上评估了我们的方法。